Response to Letter of Deficiency-DE 13-265

<u>Request for Documentation</u>: Please provide detail on the sources of fuel, including corresponding percentages, utilized by the Pinetree Power – Fitchburg(PPF) facility.

<u>Response</u>: Attachment 1 is the fuel tracking spread sheet that is used at PPF. You can see that in September of 2012, PPF ceased using paper fuel cubes as a fuel source. Prior to eliminating paper fuel, it constituted 22% to 25% of PPF's total fuel. Subsequently, the paper fuel equipment and associated fuel delivery system has been removed from the facility. Also attached is the 2013 compliance and RATA tests.

In October of 2012, PPF's contract with Waste Management to purchase landfill gas(LFG) expired. Waste Management chose not to renew the contract and the LFG compressors and associated delivery piping has been removed. PPF currently does not have the capability to burn LFG. LFG constituted 2% to 3% of the total fuel.

You can see that 2013 indicates no LFG or paper fuel usage. It is PPF's intention to not use these fuels in the future.

PPF's current fuel source is and will remain 100% sustainable Biomass wood fuel excluding start ups, shut downs and rare occasions when natural gas is needed for boiler and emissions stabilization. Expectations will be that natural gas will constitute less that 1% of total fuel.

PPF has employed North Country Procurement since 1994 to ensure fuel quality consistent with clean biomass standards. Fuel quality is monitored at the plant as well as periodic inspections at various sites.

Two facts that support that PPF's wood supply is harvested in a sustainable manner:

1) In Massachusetts, where 95% of PPF's supply comes from, the Commonwealth as a whole is harvesting 25% of what is grown in any given year. With growth exceeding removals by a factor of 4, the overall harvest in the State could be doubled or tripled and still be considered sustainable.

2) Greater than 80% of PPF's wood supply comes from forestry operations (the remainder is land clearing wood or tree surgeon wood). A forester employed by the State of Massachusetts <u>must approve</u> <u>a "Chapter 132 Cutting Plan"</u> before any harvest of wood on a forestry job in the Commonwealth. Thus the State must approve a plan on how the wood is to be cut, ensuring that harvests are dealt with in a sustainable manner.

As part of MassDEP ACOP-CE-13-7002-NT, Pinetree Power Fitchburg will be reviewing and submitting an application for a revised Operating Permit. The submittal is due June 30th, 2014. A draft OP has already been issued and is being reviewed by MassDEP and PPF. The new permit will include changes to the fuel used, indicative of quality requirements associated with sustainable biomass fuel.

Attachment 1 – Fuel tracking spreadsheet –see below

Attachment 2 – Fitchburg Compliance Emissions Test Program 2013 rev1 RM073013

Emissions Attachment 3 – Emissions Spreadsheet

Fitchburg Diagnostic Emissions Test Report 2013 rev1 RM073013

DEP 3rd 2013 qtr emission report.pdf Attachment 5 – DEP 2013 3rd Quarter Emissions Report

Attachment 1 – PP	F Fuel Tracking	Spreadsheet

2012	wood	gas	paper	total	daily avg.
	Real Tons	Equivalent Tons	Equivalent Tons	Fuel as Tons of Wood	eq. Tons
January	16,064	726	4,969	21,759	701.90
February	13,544	558	4,050	18,152	625.93
March	15,317	584	4,871	20,773	670.08
April	14,050	521	4,372	18,944	632.34
May	13,447	479	3,682	17,607	567.98
June	14,709	588	4,620	19,918	663.93
July	12,825	586	4,071	17,482	563.93
August	15,152	626	4,960	20,737	668.95
September	16,174	600	433	17,206	573.54
October	10,615	399	0	11,014	354.80
November	0	0	0	0	0.00
December	2,068	0	0	2,068	66.70
Totals	143,964	5,668	36,027	185,660	507.51

2013	wood	gas	paper	total	daily avg.
	Real Tons	Equivalent Tons	Equivalent Tons	Fuel as Tons of Wood	eq. Tons
January	5,730	0	0	5,730	184.83
February	10,418	0	0	10,418	359.24
March	11,420	0	0	11,420	368.39
April	1,508	0	0	1,508	50.32
May	1,042	0	0	1,042	33.61
June	3,975	0	0	3,975	132.51
July	16,174	0	0	16,174	521.75
August	18,847	0	0	18,847	607.96
September	17,838	0	0	17,838	594.61
October	20,095	0	0	20,095	647.36
November	11,496	0	0	11,496	383.20
December	0	0	0	0	0.00
Totals	118,543	0	0	118,543	323.65

AFFIDAVIT

STATE OF CONNECTICUT

) ss. Glastonbury

COUNTY OF HARTFORD

Eric A. DeBarba, being duly sworn, deposes and states that:

1. I am over the age of eighteen and understand the obligation of making a statement under oath.

2. I am Director of New England Origination for Pinetree Power-Fitchburg, Inc.

3. I am familiar with the supplemental information that Pinetree Power-Fitchburg, Inc. is filing with the State of New Hampshire Public Utilities Commission ("NHPUC") in response to the NHPUC's Letter of Deficiency dated November 6, 2013 with respect to Docket no. DE 13-265 in connection with its Application for Renewable Energy Source Eligibility for its facility located in Westminster, Massachusetts (the "Supplemental Information").

4. I hereby attest to the accuracy of the Supplemental Information submitted by me as preparer on behalf of Pinetree Power-Fitchburg, Inc.

IN WITNESS THEREOF, the undersigned has executed and delivered this affidavit as of the date written below.

Date: November 25, 2013

DeBarba

Eric A. DeBarba Director—New England Origination Pinetree Power-Fitchburg, Inc.

Subscribed and sworn to before me this 25th day of November, 2013.

San B. White,

Susan B. White Notary Public My commission expires: August 31, 2016

360 Old Colony Road, Suite 1 Norton, MA 02766 508-226-6700

PINETREE POWER FITCHBURG, LP WESTMINSTER, MASSACHUSETTS COMPLIANCE EMISSIONS TEST PROGRAM

JUNE 2013

Source Designation:

Pinetree Power Fitchburg LP Wood Fired Boiler 2 Rowtier Dr. Westminster, Massachusetts 01473

Concerning: Emission Testing for Particulate Matter and VOC's

Prepared for: Pinetree Power Fitchburg LP Wood Fired Boiler 2 Rowtier Dr. Westminster, Massachusetts 01473

Prepared by:

CEMServices Inc. 360 Old Colony Road Norton, Massachusetts 02766

All information contained in this report is true and accurate to the best of my knowledge.

Robert Arnold Sr. Project Director, QSTI

8/1/2013 Date

TABLE OF CONTENTS

1. INTRODUCTION	1
2. SUMMARY OF RESULTS	2
 3. FACILITY DESCRIPTION 3.1 General 3.2 Test Location 3.3 Plant Entry and Safety Policies 	3 3 4
 4. REFERENCE METHOD TEST PROCEDURES. 4.1 Velocity Traverse - EPA Test Method 1 4.2 Volumetric Flow Rate - EPA Test Method 2 4.3 Moisture Content - EPA Test Method 4 4.4 Particulate Matter - EPA Test Method 5 4.5 PM2.5 / PM10 / CPM – EPA Method 201A / 202 4.6 Nitrogen Oxides and CEMS Calibration Procedures - EPA Test Method 7E 4.7 Oxygen and Carbon Dioxide - EPA Test Method 3A 4.8 Volatile Organic Compounds (VOC) Total –EPA Test Method 25A 	5 56667890
5. REFERENCE METHOD TEST EQUIPMENT 1 5.1 Modified Method 5 Sampling Trains 1 5.2 Mobile CEM Laboratory 1 5.3 Calibration Gases 1	1 1 2
6. QUALITY CONTROL PROCEDURES	4 4

LIST OF TABLES

POLLUTANTS, TEST METHODOLOGIES, AND EMISSION LIMITS	1
COMPLIANCE TEST RESULTS	2
COMPLIANCE TEST RESULTS - PM FILTERABLE	2
PARTICULATE AND VELOCITY TRAVERSE POINT LOCATIONS	5
PM2.5/PM10 TRAVERSE POINT LOCATIONS	5
PS 2 CEM TRAVERSE POINT LOCATIONS	9
REFERENCE METHOD ANALYZERS	12
REFERENCE METHOD CALIBRATION GASES	13

LIST OF FIGURES

APPENDICES

- A. VOC Emission Rate Calculation Sheets
- B. Particulate (PM Filterable) Emission Calculation and Velocity Traverse Sheets
- C. PM 2.5 (Filterable) Emission Calculation Sheets
- D. PM 10 (Filterable) Emission Calculation Sheets
- E. 201A Test Data Sheets
- F. Back Half (Condensable) PM-10 Emission Calculation Sheets
- G. CEM Data with Calibration Error Checks and System Bias Checks
- H. CEM Minute Data
- I. Laboratory Analysis
- J. Fuel Analysis
- K. Field Data Sheets
- L. Calibration Gas Certificates of Analysis
- M. Facility Data Sheet
- N. Reference Method Equipment Calibration Sheets
- **O.** Definition of Abbreviations

1. INTRODUCTION

CEMServices of Norton, Massachusetts was retained by Pinetree Power Fitchburg, LP (Pinetree) to conduct a Particulate Emission Test Program at their power station located in Westminster, Massachusetts. The objective of the testing was to demonstrate the status of the wood fired boiler's with respect to their Air Quality Operating Permit. The boiler currently is only firing wood chips. The emission testing program was performed in accordance with the Test Protocol dated May 13, 2013 and approved by the Department on June 18, 2013.

Table 1-1 indicates the air constituents / pollutants tested, and the test methodologies used during the emissions test program, and the emission limits for any applicable pollutants.

CONSTITUENTS	TEST METHODS	EMISSION LIMIT
Volumetric Flow	EPA Method 1 & 2	N/A
Oxygen\Carbon Dioxide	EPA Method 3A	N/A
Moisture	EPA Method 4	N/A
Filterable Particulate Matter	EBA Method 5	0.016 #/MMBtu
	EFA Method 5	4.16 #/hr
Total Hydrocarbons/Non-Methane	EPA Method 25A/18	0.03 #/MMBtu
Total Trydrocarbons/Non-Methane	EFA Method 25A/16	7.8 #/hr
PM 2.5/10	EPA Method 201A/202	N/A

TABLE 1-1 POLLUTANTS, TEST METHODOLOGIES, AND EMISSION LIMITS

Three runs were performed for compliance determination. One of the three test runs for filterable particulate matter compliance run was conducted during a soot blow cycle and the average was prorated average based on soot blow run times. All Reference Method LB/MMBtu emission rates were calculated using the actual fuel factor (Fd) derived from the laboratory analysis from a composite wood sample taken from grab samples collected during the each testing.

Operations test data collected included: Fuel input rate, furnace temperature, baghouse inlet temperature, baghouse pressure drop, opacity, facility CEM Data, heat input and megawatts. Additionally, the DCS performance log was printed out for each run.

The test program took place June 24-27, 2013. Robert Arnold of CEMServices was the Project Director for this test Program. Jim Jardin, Chris Parrot, and Mike Dadmun also of CEMServices assisted him. Mr. Michael Buckman was responsible for process operations during testing. Mr. Buckman is also the facility contact and can be reached at:

Mr. Michael Buckman Pinetree Power Fitchburg LP 2 Rowtier Dr Westminster, Massachusetts 01473 (508) 874-2966 x2

2. SUMMARY OF RESULTS

Run		1	2	3	Average	Permit Limit	Result
DM 2.5 Filtorable	LB/MMBtu	0.0056	0.0068	0.0051	0.0058	N/A	N/A
FINI 2.5 FILLETADIE	LB/HR	1.28	1.49	1.08	1.28	N/A	N/A
DM10 Filtoroblo	LB/MMBtu	0.0056	0.0063	0.0047	0.0055	N/A	N/A
FINITO FILLEFADIE	LB/HR	1.26	1.37	0.99	1.21	N/A	N/A
PM 2.5/10	LB/MMBtu	0.0112	0.0131	0.0098	0.0114	N/A	N/A
Total Filterable	LB/HR	2.54	2.86	2.07	2.49	N/A	N/A
Condensable PM	LB/MMBtu	0.0052	0.0047	0.0046	0.0048	N/A	N/A
(CPM)	LB/HR	1.17	1.02	0.97	1.05	N/A	N/A
PM 2.5/10/CPM	LB/MMBtu	0.0164	0.0178	0.0144	0.00162	N/A	N/A
Total	LB/HR	3.71	3.88	3.04	3.54	N/A	N/A
	PPM	13.46	4.02	5.61	7.70	N/A	N/A
Non Methane VOC	LB/MMBtu	0.009	0.003	0.004	0.005	0.03	PASS
	LB/HR	2.10	0.63	0.87	1.20	7.8	PASS

TABLE 2-1COMPLIANCE TEST RESULTS

TABLE 2-2 COMPLIANCE TEST RESULTS - PM FILTERABLE

Ru	in	1	2	3SB*	Average	Permit Limit	Result
PM Filterable	LB/MMBtu	0.010	0.012	0.013	0.012	0.016	PASS
	LB/HR	3.50	4.17	4.45	4.04	4.16	PASS

*-Run 3 was a soot-blow run.

3. FACILITY DESCRIPTION

3.1 General

Pinetree Power Fitchburg LP, located in Westminster, Massachusetts consists of a wood fired boiler with a maximum design capacity of 260 MMBTU/hour which uses wood chips as its primary fuel. The boiler drives a steam turbine generator with a nominal output of approximately 16 megawatts net electricity. At this time the boiler is only firing wood chips (and natural gas for startup).

Wood fuel is introduced into the boiler through three pneumatic wood fuel distributors. The wood is partially burned in suspension on a Harrington grate provided by Detroit Stoker. Multiple levels of overfire air are injected into the combustion section to ensure the complete burn.

Particulate emissions generated from the source are controlled by a dry mechanical dust collector and a positive pressure air filter system (baghouse). NOx is controlled by the use of Selective Non-catalytic Reduction technology with urea injection. Although rarely used, SO2 can be controlled by a manually operated sodium bicarbonate injection that is located upstream of the baghouse.

Exhaust gases exiting the boiler are directed through a 75-inch inside diameter exhaust stack standing 180 feet above grade. The CEM probes and EPA RM test ports are located approximately 130 feet above grade

3.2 Test Location

The stack that services the wood-fired boiler at Pinetree has an internal diameter of 6.25 feet at the port height (130 feet). There are two sampling ports, 6 inches in diameter and ninety degrees apart. The distance from the nearest downstream disturbance (taper) to the sampling ports is 20 feet. The distance from the ports to the nearest upstream disturbance (stack exit) is 50 feet. Figure 3-1 is a schematic of the sampling location.

Figure not drawn to scale

FIGURE 3-1 TEST LOCATION

3.3 Plant Entry and Safety Policies

Pinetree requires all visitors to check in with the control room before walking about the plant. Most areas of the plant require a hard hat. Safety glasses and steel toe boots are also encouraged.

4. REFERENCE METHOD TEST PROCEDURES

4.1 Velocity Traverse - EPA Test Method 1

Method 1 procedures delineate velocity traverses for stationary sources. As described in Section 3, the stack internal diameter at the port location is 6.25 feet. The ports are 20 feet or 3.2 diameters from the nearest downstream disturbance, and 50 feet or 8 diameters from the nearest upstream disturbance.

Based upon EPA Method 1 criteria, a total of twenty four (24) traverse points (12 per port) were used for volumetric flowrate determinations and isokenectic sampling traverses for PM determination. The probe was marked according to the measurements in Table 4-1. For PM 10/2.5 testing, the probe was placed at a total of twelve (12) traverse points, 6 per port, during the constant rate sampling. This probe was marked according to the measurements in Tables 4-2.

Traverse Point	Distance (% Diameter)	Distance from Wall (inches)
1	2.1	1.6
2	6.7	5.0
3	11.8	8.9
4	17.7	13.3
5	25.0	18.8
6	35.6	26.7
7	64.4	48.3
8	75.0	56.3
9	82.3	61.7
10	88.2	66.2
11	93.3	70.0
12	97.9	73.4

TABLE 4-1 PARTICULATE AND VELOCITY TRAVERSE POINT LOCATIONS

TABLE 4-2 PM2.5/PM10 TRAVERSE POINT LOCATIONS

Traverse Point #	Distance (% Diameter)	Distance from Wall (inches)
1	4.4	3.3
2	14.6	11.0
3	29.6	22.2
4	70.4	52.8
5	85.4	64.1
6	95.6	71.7

4.2 Volumetric Flow Rate - EPA Test Method 2

Method 2 was used for the determination of stack gas velocity and volumetric flow rate. Before the velocity traverse was started, a leak check was conducted on the pitots, and the manometer was leveled. The pitots were connected to a manometer using 1/8 inch ID Tygon tubing. These connections were checked for leaks prior to the initiation of testing, and at the conclusion of the day. The velocity head and stack gas temperatures were recorded for each of the required sampling points. Simultaneous gas density (Method 3A) and stack gas moisture content (Method 4) testing was conducted during every test run.

4.3 Moisture Content - EPA Test Method 4

Method 4 is used for the determination of moisture content in stack gas. This method consists of extracting a known volume of gas sample and quantifying the removed moisture portion of this sample. Moisture content was determined from each corresponding test run.

Before each test run the impingers used to remove condensate from the gas were prepared according to each specific method. Impingers were loaded according to each method. The sampling train was then assembled and the sampling probe heated. The train was checked for leaks by plugging the sample inlet and challenging the train with a vacuum of 15 inches of Hg. All leak rates were below 0.02 CFM. The initial meter volume was recorded and the probe was positioned at the first traverse point. Sampling was conducted isokinetically for each run when required. At the completion of each test run the final meter volume was recorded and their final volumes recorded.

4.4 Particulate Matter - EPA Test Method 5

This method is used for the determination of particulate emissions from stationary sources. It is used in conjunction with Methods 1,2, and 4. Particulate matter is drawn isokinetically from the source and collected onto a glass fiber filter.

Before each test run the impingers used to remove condensate from the gas were prepared. A total of four impingers were loaded according to the method. The remainder of the sample train is assembled by inserting a desiccated tared filter into the glass filter holder. The filter holder is then placed into the hot box and the sample probe and nozzle are attached. The hot box and sample probe were heated to approximately 250 °F. Prior the start of each run a leak check was performed from the end of the nozzle at a vacuum of 15 inches of mercury.

The run was then initiated and isokinetic sampling took place. The entire stack was traversed according to the sample points specified in Method 1. 2.5 minute readings were taken during the one-hour test run for the 24 traverse points that were required. At the conclusion of the test a post leak check was conducted at the highest vacuum obtained during the run and the sample train was move to the cleanup site where it was recovered in strict accordance with Method 5 Sample Recovery Procedures as follows:

Container #1. The filter was carefully removed from the filter holder and placed in its identified petri dish container.

Container #2. Taking care to see that dust on the outside of the probe or other exterior surfaces did not get into the sample, particulate matter from the nozzle, probe liner and front half of the filter holder were quantitatively recovered by washing these components

with acetone into a glass or Nalgene container. The inside of each component was brushed and rinsed until the acetone rinse showed no visible particles, after which a final rinse of the inside surface was performed.

4.5 PM2.5 / PM10 / CPM – EPA Method 201A / 202

This method is used for the determination of PM10 and condensable particulate emissions from stationary sources. Particulate matter is drawn isokinetically from the source and collected through a cyclone onto a glass fiber filter. Particulate that makes it to the filter is considered the PM10 portion of the total sample. Sample rates and dwell times were calculated using PM10 / PM2.5 Software for Windows obtained from Apex Instruments. The test series consisted of three (3) – two (2) hour test runs.

The condensable particulate matter (CPM) is collected in a Method 23 type condenser, dry impingers and a CPM filter between the second and third impingers after the filterable PM has been collected. Before each test run the impingers used to remove condensate from the gas were prepared. A total of four impingers were used according to the method. Two cyclone sizing devices were placed in series (PM2.5 first then PM10) onto an in stack filter holder containing a desiccated tared filter. Prior the start of each run a leak check was performed from the end of the nozzle at a vacuum of 15 inches of mercury.

The run was then initiated and isokinetic sampling at a constant rate took place. The entire stack was traversed according to the sample points specified in Method 201A. Dwell time was established for each point during the two-hour test run. At the conclusion of the test, the sizing devices were removed and a post leak check was conducted at the highest vacuum obtained during the run. If no water was collected before the CPM filter then the purge was skipped. Otherwise the impinger train was purged with zero-grade nitrogen gas for 1 hour following the leak check as described in Section 8.5.3 of U.S. EPA Method 202, to purge dissolved SO2 gas from the impinger solutions. The purge was started within 10 minutes of completing the run, typically at the recovery lab. The nitrogen purge line was connected to a clean particle and activated carbon filters attached to the impinger train inlet to minimize potential particle or vapor contamination.

The sample train was then moved to the cleanup site where it was recovered in strict accordance with Method 201A Sample Recovery Procedures as follows:

Container #1. The filter was carefully removed from the filter holder and placed in it's identified petri dish container.

Container #2 and #3. Taking care to see that dust on the outside of the cyclone heads or other exterior surfaces did not get into the sample, particulate matter from the heads (PM2.5 & PM10) was quantitatively recovered by rinsing these components with acetone into a separate glass or Nalgene container. The inside of each component was brushed and rinsed until the acetone rinse showed no visible particles, after which a final rinse of the inside surface was performed. All gravimetric analysis was conducted in accordance with Test Method 201A.

Container #4 (CPM container #1): The contents of the dropout and backup impingers prior to the CPM filter were quantitatively recovered into this container. All sampling train components including the back half of the filterable PM filter holder, the probe extension, condenser, each impinger and the connecting glassware, and the front half of the CPM filter housing was rinsed twice with water. This was added to CPM Container #1.

Container #5 (CPM container #2, organic rinse): Following the water rinse, all sampling train components including the back half of the filterable PM filter holder, the probe

extension, condenser, each impinger and the connecting glassware, and the front half of the CPM filter housing were rinsed with acetone and placed in CPM container #2. This was followed by two rinses of hexane into the same container (CPM #2).

Container #6 (CPM container #3 filter). Container #7 (CPM container #4 cold impinger water). Container #8 (CPM container #5 sigel) Container #9 (CPM container #6 acetone field blank) Container #10 (CPM container #7 water field blank) Container #11 (CPM container #8 hexane field blank) Container #12 (CPM container #9 field train proof blank inorganic) Container #13 (CPM container #10 field train proof blank inorganic)

4.6 Nitrogen Oxides and CEMS Calibration Procedures - EPA Test Method 7E

Method 7E is used for the determination of Nitrogen Oxides emissions from stationary sources using instrumental analyzer procedures. In addition, all calibration procedures and requirements for the other instrumentation methods used (Method 3A) are specified in this method.

Before any testing was conducted, the calibration span of all test analyzers was set up so that expected source emissions were at least twenty (20) percent of this span and would not exceed this span. Once this span was determined, calibration gases were chosen within this span. Only gases prepared according to EPA Protocol G1/G2 were used. Certificates of analysis for all gases were provided on-site at the time of testing. Analyzer calibration error checks were then conducted by challenging each analyzer with a zero, mid, and high gas.

The actual value of the high gas used was the calibration span of each analyzer. Analyzer responses to these gases were within two (2) percent of the instrument's span or within 0.5 PPM of the gas value. Before and after each test run a sampling system bias check was conducted on each monitor.

This check consisted of introducing the calibration gases at the sampling probe thus allowing the gases to travel through the entire sampling system including any filters. The analyzer responses to this check were then recorded by the data acquisition system. All system bias check responses were within five (5) percent of the instruments span or within 0.5 PPM, when compared to the analyzer calibration error check conducted initially.

The sampling system bias check conducted prior to each test run was compared to the sampling system bias check conducted at the completion of that same run.

Differences between the two bias checks constitute the upscale and zero calibration drifts. All calculated calibration drifts were below three (3) percent of the span of the analyzer or within 0.5 PPM.

Once the initial system bias check was conducted the system was put into the sample mode and data acquisition was initiated. The probe was positioned at the first traverse point. The heated probe was 5/8" stainless steel tube that was traversed at 16.7%, 50.0%, and 83.3% of the stack diameter (6.5 ft). Table 4-3 shows the CEM traverse point locations.

Traverse Point	Distance (% Diameter)	Distance from Wall
1	16.7	12.5 "
2	50.0	37.5 "
3	83.3	62.5 "

TABLE 4-3PS 2 CEM TRAVERSE POINT LOCATIONS

A STRATA data shuttle documented voltage output from each monitor. This instrument sends all signals via a RS-232 cable to a computer for data archiving. Data points were logged every two (2) seconds during each test run. At the test run completion, data was transferred to a spreadsheet for determination of the raw run average. This data is included in the appendices. Results from the initial and final system bias checks were used to adjust the raw run average to correct it for any deviations due to the system bias.

4.7 Oxygen and Carbon Dioxide - EPA Test Method 3A

Method 3A is used for the determination of Oxygen and Carbon Dioxide emissions from stationary sources using instrumental analyzer procedures. All calibration procedures and requirements for this instrumentation method are identical to those found in EPA Test Method 7E.

O2 and CO2 content in the effluent was determined by a California Analytical Instruments monitor. For the O2, the instrument utilizes a micro-fuel cell that consumes O2 from the atmosphere surrounding the measurement probe. The consumption of O2 generates a proportional electrical current. This current is then amplified and provides a signal output of 0-1 V DC which corresponds to a full-scale range of 0-25 % O2.

For the CO2, a non-dispersive infrared detector is used to continuously measure the concentration in the effluent. The theory of operation for this portion of the analyzer is based on the principle that CO2 has a unique absorption line spectrum in the infrared region.

The instrument consists of an infrared light source, a chopper, a measurement cell, and a detector. The infrared light beam emitted by the source passes through the measuring cell, which is filled with a continuously flowing gas sample. The light beam is partially absorbed or attenuated by the gas species of interest in this cell before reaching the front chamber of the detector.

Both the front and rear chambers of the sealed detector are filled with a reference gas. The difference in the amount of light absorbed between the front and rear chambers are dependent of the concentration of the gas species of interest within the sample measurement cell. A pressure differential is thus created between the two chambers. This pressure difference is then observed as gas flow by the micro-flow sensor located in a channel connecting the two chambers.

The resulting AC signal from the micro-flow sensor is rectified, amplified, and linearized into a DC voltage signal for output. An interference response check was conducted on the O2 and CO2 analyzers prior to testing.

4.8 Volatile Organic Compounds (VOC) Total – EPA Test Method 25A

Method 25A is used for the measurement of volatile organic compounds (VOC) concentrations using flame ionization detection (FID). A Vig Industries FID is the analyzer that was used for compliance determinations of VOC's. For this method a gas sample is continuously extracted from the source through a heated (approx. 2500 F) Teflon sample line to the FID. During each Method 25A test run an integrated bag sample was taken from the bypass of the FID. This sample was analyzed for Methane within 48 hours if the total VOC is over the emission limit.

During FID sampling, CH molecules in the sample are introduced in the burner socket through the burner tip and into a hydrogen flame. The thermal energy (caused by combustion of hydrogen) cracks the CH molecules into C and H atoms. In the hot zone the C atoms loose a certain number of electrons and now become C ions with a positive charge.

The negative electrical field created by a negative charge imposed on the collector (which supplies an excess of negative electrons) influences the positive charged C ions which are drifting towards the collector and absorb a number of electrons thus neutralizing the positive C ions.

This neutralization causes a change in the current between the electrodes and is directed through a high impedance amplifier which is connected to a meter type readout. The neutralized C atoms combine with the O2 (from the combustion source) to form CO2. The hydrogen introduced to form the flame combusts into water vapor. Prior to testing the sample train was assembled by connecting one end of the probe to the sample line and the other to the FID. The train will then be leak checked.

The FID was calibrated and the responses to a zero and three other methane calibration gases within the range of the instrument are recorded onto a data sheet. A sampling system bias check was required and was conducted by introducing the bias check standard directly into the flame ionization analyzer (FIA) and then through the entire sampling system, excluding the probe. If the results agree within 5%, the bias check is acceptable; otherwise the test data (since the last valid bias check) is invalid. Once sampling is initiated, the signal from the FID is sent to the data logger and computer. Data was archived at 2-second intervals during each test run.

5. REFERENCE METHOD TEST EQUIPMENT

5.1 Modified Method 5 Sampling Trains

All modified Method 5 testing, described in Section 4 was conducted using a sample trains manufactured by Nutech.

Meter Boxes - The meter boxes used in this program were the Nutech Model 2010 -Isokinetic Stack Samplers. These boxes consist of a leak-free sample pump, a dry gas meter, a vacuum gauge, and a temperature readout. Thermocouples are mounted on the inlet and outlet of the dry gas meter to provide meter temperatures during testing.

Umbilicals - The umbilicals used in this program consisted of a sample line, pitot lines, and thermocouple lines. These lines transported sample from the impingers to the meter box, indicated pressure difference at the pitots to the meter box, and carried temperature signals from the stack to the temperature readout in the meter box.

Condenser System - This system consisted of glass or Teflon impingers placed in series and in an ice bath. The number of impingers, impinger content, and impinger type varied depending on which test method was being performed.

Probe - The probe assembly consisted of a set of "S" type pitots, a stack thermocouple, and a stainless steel sheath with a heated stainless steel liner.

Particulate Filter - This in-stack filter is a Labyrinth Systems 5 micron sintered stainless steel design.

5.2 Mobile CEM Laboratory

All reference test methods described in Section 4 were conducted using the CEMServices mobile CEM laboratory. This laboratory consists of all analyzers and support equipment used to conduct the CEM sampling during this test program. The following is a description of each item that makes up the entire system:

Sample Probe - A seven foot heated stainless steel probe was used for this test program. The probe has a filter at the end of it to remove particulate matter. The other end contains a heated three-way "flood chamber" allowing either sample or calibration gas to flow to the sample line.

Particulate Filter - This in-stack filter is a Labyrinth Systems 5 micron sintered stainless steel design.

Calibration Valve Assembly - This assembly consists of a Hoke three-way stainless steel valve mounted inside the mobile test lab. The assembly is capable of blocking sample flow and introducing calibration gas into the system. This assembly along with the "flood chamber" ensures that calibrations are performed under the same conditions as sampling.

Heated Sample Line - The heated sample line is two hundred (200) feet long and transports the gas sample from the CEM probe to the moisture removal system and FID in the Mobile Lab. A resistor box that allows you to set the temperature can control the heater in this line. This line was set to 250 degrees F. A heater jumper in the Mobile Lab transported a slip stream sample form the heated line to the FID prior to the moisture removal system.

Moisture Removal System - This system continuously removes moisture from the sample gas while maintaining minimal contact between the condensate and the sample gas. CEMServices uses an electronically cooled condenser consisting of two (2) Teflon heat exchangers which are continuously drained of condensate by two (2) peristaltic pumps. The inlet to the system is connected to the heated sample line and the outlet was connected to the sample pump.

Sample Pump - A dual headed diaphragm pump was used to transport the gas sample through the system to the sample gas manifold. Air Dimension manufactures this pump and all parts coming into contact with the gas stream are either Teflon or stainless steel.

Sample Gas Manifold - This manifold consists of a series of valves and adjustable rotameters capable of setting and maintaining the desired backpressure and flow rate to the analyzers during both sampling and calibration.

Sample Gas Analyzers - CEMServices used the following analyzers to complete this test program:

Gas	Manufacturer	Model	Span
O ₂	California Analytical	100	0-22.8%
CO ₂	California Analytical	100	0-19.85 %
VOC	Via Industrios	55	0-110 PPM
VUC	vig muustnes	55	as Methane

TABLE 5-1 REFERENCE METHOD ANALYZERS

Data Recorder - All voltage outputs from the analyzers are sent to a Strawberry Tree Data Shuttle. This shuttle logged data at two-second intervals. Data from the shuttle is sent to a computer where a Strawberry Tree data acquisition program lists instantaneous concentration values for each parameter. At the conclusion of each run, one-minute averages are printed out and a calibration is initiated through the program. The calibration data is used to correct the raw averages for system bias and drift.

5.3 Calibration Gases

All calibration gases used in this test program were prepared according to EPA Protocol G1/G2. As per EPA Test Method 7E for all O2 and CO2 testing, the high level calibration gas was the span of the analyzer. All mid calibration gas values were between 40-60 % of the span of the analyzer (or value of the high level gas), and all low (or zero) calibration gas values were between 0-20 % of the span of the analyzer (or value of the high level gas) using pre-purified nitrogen.

Below is a list of the gases to be used in this test program:

MONITOR SPAN	ALLOWABLE GAS VALUES	CAL POINT	ACTUAL VALUE	CYLINDER #	EXPIRATION DATE
02	0.0-4.6	Low	0.0	C118864	-
0-22.8%	9.1-13.7	Mid	11.45	CC110145	5-29-2021
0-22.0 /0	22.8	High	22.8	CC84988	9-19-2020
<u> </u>	0.0-4.0	Low	0.0	C118864	-
0 10 95 %	7.9-11.9	Mid	9.91	CC110145	5-29-2021
0-19.00 %	19.85	High	19.85	CC84988	9-19-2020
	0	Zero	0.0	CC118864	-
VOC	27.5-38.5	Low	29.6	CC134734	5-31-2015
0-110 PPM	49.5-60.5	Mid	55.2	SG9153990	9-28-2014
	88-99	High	91.3	CC20164	10-27-2013

TABLE 5-2REFERENCE METHOD CALIBRATION GASES

6. QUALITY CONTROL PROCEDURES

6.1 General

Throughout all phases of this test program strict attention was given to all testing to provide the highest quality of results possible. All of CEMServices test equipment is of the highest quality available and undergoes routine maintenance to ensure top operating condition. This includes meter boxes, thermocouples, barometers, pitot tubes and sampling nozzles.

Meter boxes are calibrated over a full range of flow rates against certified orifices every six months. After each field use the meter box is given a calibration check against an orifice at the average flow rates and highest vacuums experienced in the field. Thermocouples are calibrated as specified in the EPA Handbook against NBS traceable mercury in glass thermometer. Pitot tubes are visually inspected for conformance to the dimensional specified in EPA Method 2.

Sampling was conducted by trained personnel with extensive experience in CEM sampling. All analyzers are tested for interference of other gas compounds at least once every six months. In addition, a converter efficiency check is performed on the NOx analyzer to ensure the proper conversion of NO2 to NO.

All sampling and analysis was conducted in strict accordance with EPA test procedures (where available). The quality control procedures found in the EPA Quality Assurance Handbook for Air Pollution Measurement Systems was adhered to as well.

Analyzer calibrations were performed at the beginning of each test day. System calibrations were performed before and after each test run through the entire sampling system. All calculations were conducted in strict accordance with the equations found in the individual Methods. Calculations were conducted on a computer and the input data was checked by a person other than the original calculator to ensure that it is correct.

The entire staff of CEMServices is thoroughly familiar with all test methods used in this program and has extensive experience in source emission monitoring.

Appendix A

THC EMISSION RATE CALCULATION

FACILTY: UNIT: DATE:	Pinetree Stack 6-27-13	Fitchburg				RUN ID#: START: END:	VOC 1 08:20 09:20	
Cgas PPMw [.]	v =	10.69	Cga	s % CO2	=	13.00		
Cgas PPMd	v =	13.46	Cga	s % 02	No.	7.05		
M.W. CH4	=	16.04	FUE:	L FACTOR	(Fd) =	11022		
BWO %		20.6%	Qs :	DSCFH		3755628		
Cd = Cgas	X (M.W	. / 385.6)	/ 1000000		=	5.60E-07	LBS/SCF	
E = Cd X	FUEL FACT	OR X(20.9/(20.9-%02))		1221	0.009	LBS/MMBTU	
PMR = CD	X QS DSC	FH			==	2.10	LBS/HR	

THC EMISSION RATE CALCULATION

FACILTY: UNIT: DATE:	Pinetree Stack 6-27-13	Fitchburg			RUN ID#: START: END:	VOC 2 09:26 10:26
Cgas PPMw	v =	3.19	Cgas % CO2	=	12.24	
Cgas PPMd	v =	4.02	Cgas % O2	=	7.91	
M.W. CH4		16.04	FUEL FACTOR (H	Fd) =	11022	
BWO %	=	20.6%	Qs DSCFH	-	3755628	
Cd = Cgas	X (M.W.	/ 385.6) / 100000	00	=	1.67E-07	LBS/SCF

PMR = CD X QS DSCFH = 0.63 LBS/HR

E = Cd X FUEL FACTOR X(20.9/(20.9-802))

= 0.003 LBS/MMBTU

THC EMISSION RATE CALCULATION

FACILTY: UNIT: DATE:	Pinetree Fi Stack 6-27-13	tchburg			RUN ID#: START: END:	VOC 3 09:48 10:48
Cgas PPMw	v =	4.47	Cgas % CO2		12.19	
Cgas PPMd	v =	5.61	Cgas % O2	=	7.97	
M.W. CH4	==	16.04	FUEL FACTOR(Fd) =	11022	
BWO %		20.3%	Qs DSCFH		3744749	
Cd = Cgas	X (M.W.	/ 385.6) / 1000000		-	2.33E-07	LBS/SCF
E = Cd X	FUEL FACTOR	X(20.9/(20.9-%02)) :	-	0.004	LBS/MMBTU

= 0.87 LBS/HR

PMR = CD X QS DSCFH

Appendix B

FACILITY: UNIT :	PINETREE FIT WOOD FIRED B	CHBURG OILER				ST	RUN ID# : 'ART TIME: END TIME:	Run 1 08:25 09:35
DATE :	6-26-13	TRAV	DELTA	SQ	DELTA	DGM	DGM	STACK
	C 05	PT	P 0.00	ROOT	H 1 OO		001	TEMP
DS (FT)	6.25	BI	0.90	0.95	1.00	95	93	362
As (SQFT)	30.68	2	0.94	0.97	1.00	94	94	300
Y =	1.01/1	3	1.00	1.00	2.00	94	94	368
PIT COEFF	0.84	4	1.00	1.00	2.00	94	94	368
Dn (IN)	0.250	5	1.00	1.00	2.00	94	94	369
An (SQFT)	1.00	6	0.95	0.97	1.90	94	94	309
IMP-I (INT)	100	/	0.84	0.92	1.08	94	94	370
IMP-2 (INT)	100	8	0.95	0.97	1.90	95	95	369
IMP-3 (INT)	U	9	0.93	0.96	1.86	96	96	368
IMP-4 (INT)	550	10	0.83	0.91	1.66	96	96	367
IMP-I (FIN)	254	11	0.73	0.85	1.46	96	96	360
IMP-2 (FIN)	159	12	0.70	0.84	1.40	96	96	354
IMP-3 (FIN)		AL	0.78	0.88	1.56	96	96	347
IMP-4 (FIN)	561.0	2	0.82	0.91	1.64	97	97	358
% CO2 (OUT)	12.80	3	1.05	1.02	2.10	97	97	365
% O2 (OUT)	7.27	4	1.05	1.02	2.10	97	97	370
% CO (OUT)	0.02	5	1.00	1.00	2.00	97	97	370
% N2 (OUT)	79.91	6	0.90	0.95	1.80	97	97	371
		.7	0.92	0.96	1.84	97	97	371
		8	0.96	0.98	1.92	97	97	370
P BAR	29.78	9	0.95	0.97	1.90	96	96	369
PSTK	-0.67	10	0.92	0.96	1.84	96	96	369
FINAL METER	470.048	11	0.88	0.94	1.76	97	97	366
INT METER	424.583	12	0.65	0.81	1.30	97	97	361
MID CHECK	0.000	AVG:	0.90	0.95	1.80	95.7	95.7	365.7
VM (CF)	45.465	TS(R) =		825.7	DELT	A H (ABS)		29.91
RUN TIME	60	TM ('F) =		95.7	PS (ABS)		29.73
F-FACTOR	11022	TM ('R)=		555.7	VI (TOT)		235.0
SAMPLE	FILTER	BEAKER		SAMPLE		FILTER	BEAKER	
NUMBER	3590	21		NUMBER		3593	30	
FINAL WT.	0.3545	49.6213		FINAL W	Τ.	0.3376	66.8444	
TARE WT.	0.3429	49.6145		TARE WT	•	0.3377	66.8442	
NET WT.	0.0116	0.0068		NET WT.		-0.0001	0.0002	
SAMPLE BEAKER	VOLUME	. 60	ml	BLANK B	EAKER VO	DLUME	100	ml
TOTAL SAMPLE	GAIN	18.40	mg	ACETONE	RESIDUE	Ξ	0.12	mg
TOTAL SAMPLE	GAIN LESS ACE	TONE RESIDU	iE (Mn)				18.28	mg
VM STD =	17.64 (VI	4) (Y) (DEL	TA H AB:	S) / (TM)			43.91	DSCF
VW STD =	·	.04707 (V	I TOT)				11.06	CF
BWO =	(7	W STD)/(VW	STD) + (N	M STD)			0.201	
Md (DRY) =	.44(%CO2)-	+.32(%02)+.	28 (%CO)·	+.28(%N2)		=	30.34	LBS/MOLE
Ms (WET) =		Md(1-BWO) +	18(BWO)	, ,			27.86	LBS/MOLE
G =	S	SORT (TS /)	PS / MS)				1.00	
VS =	85	5.49(CP)(G)	(SORT DE	ELTA P)		==	67.98	FPS
Н =		0.002669	(VI TO)	() ()		==	0.63	
J ==	(DEL	TA H ABS) (VM) (Y)	/ (TM)			2.49	
К =		(H) +	(J)				3.12	
% ISO =	((TS)(K)(1.667))/ ((TIME) (V	S) (PS) (AN	1))		103.8	0
Qs =	3600(1-1	BWO)(VS)(AS)(17.64)(PS)/(TS	5)		3809386	DSCFH
CS =	(2.2	05x10-6) (M	[N] / (V	M STD)			9.18E-07	LBS/SCF
CS' =		.0154 (MN)	/ (VM S	TD)			0.00641	GRAINS/SCF
CS'@7%02 =	CS'	* (20.9-7)	/ (20.9	- 02)		_	0.00654	GRAINS/SCF
CS'@12%CO2=		CS' * (12 /	% CO2)				0.00601	GRAINS/SCF
PMR =		CS X	Qs				3.50	LBS/HR
Ε =	CS x FUE	L FACTOR X	(20.9/(2	0.9-%02))		0.010	LBS/MMBTU

.

FACILITY: UNIT :	PINETREE FITC WOOD FIRED BO	HBURG ILER				S	RUN ID# : START TIME: END TIME:	Run 2 09:55 10:57
DATE :	6-26-13	TRAV PT	DELTA	SQ BOOT	DELTA H	DGM	DGM	STACK
Ds (FT)	6.25	A1	0.92	0.96	1 84	96	96	373
As (SOFT)	30.68	2	0.95	0.90	1 90	97	97	374
Y =	1 0171	3	1 00	1 00	2 00	97	97	376
PIT CORFE	0.84	4	1 05	1 02	2.00	98	98	370
Dn (TN)	0.250	5	1.05	1.02	2.10	98	98	377
An (SOFT)	0.00034	6	0.80	0.89	1.60	98	98	377
TMP-1 (TNT)	100	7	0 75	0.87	1 50	97	97	377
TMP-2 (INT)	100	, 8	1 10	1 05	2 20	97	97	377
TMP-3 (INT)	0	9	1.00	1.00	2.00	97	97	375
TMP-4 (INT)	550	10	0.92	0.96	1.84	98	98	375
TMP-1 (FTN)	264	11	0.95	0.97	1.90	98	98	375
TMP-2 (FTN)	167	12	0.83	0.91	1.66	98	98	371
TMP-3 (FTN)	16	B1	0.93	0.96	1.86	97	97	370
IMP-4 (FIN)	565.8	2	0.94	0.97	1.88	97	97	371
% CO2 (OUT)	13.48	3	0.98	0.99	1.96	98	98	375
8 O2 (OUT)	6.63	4	1.05	1.02	2.10	97	97	377
% CO (OUT)	0.04	5	1.00	1.00	2.00	97	97	378
% N2 (OUT)	79.85	6	1.00	1.00	2.00	97	97	378
• (•••-,		7	0.91	0.95	1.82	97	97	378
		8	0.90	0.95	1.80	97	97	378
P BAR	29.78	9	0.94	0.97	1.88	97	97	379
PSTK	-0.65	10	0.93	0.96	1.86	97	97	373
FINAL METER	519.358	11	0.88	0.94	1.76	97	97	374
INT METER	471.500	12	0.81	0.90	1.62	97	97	370
MID CHECK	0.000	AVG:	0.94	0.97	1.88	97.3	97.3	375.2
VM (CF)	47.858	TS('R) =		835.2	DELTA	H (ABS)	=	29.92
RUN TIME	60	TM ('F)=		97.3	PS (A	(BS)		29.73
F-FACTOR	11022	TM ('R)=		557.3	VI (I	OT)	=	262.8
SAMPLE	FILTER	BEAKER		SAMPLE		FILTER	BEAKER	
NUMBER	3591	22		NUMBER	_	3593	30	
FINAL WT.	0.35/1	60.2763		FINAL WI	Ľ.	0.3376	66.8444	
TARE WT.	0.3432	60.2673		TARE WT.	•	0.3377	66.8442	
NET WT.	0.0139	0.0090	2	NET WT.		~0.0001	0.0002	2
SAMPLE BEAKER	VOLUME	6U	m⊥	BLANK BI	SAKER VOI	LUME	100	ml
TOTAL SAMPLE	JAIN CAIN INCO BODW	22.9U	mg	ACETONE	RESIDUE		0.12	mg
TOTAL SAMPLE	JAIN LESS ACETO	DNE RESIDUE (Mn)			adala Mare	22.18	mg
VM STD =	17.64 (VM)	(Y) (DELTA	H ABS) /	(TM)		=	46.10	DSCF
VW STD =		.04707 (VI	TOT)				12.37	CF
BWO =		(VW STD)/(VW	STD)+(VM	STD)			0.212	
Md (DRY) =	.44(%CO2)+.	32(%02)+.28(%CO)+.28	(%N2)		==	30.42	LBS/MOLE
Ms (WET) =		Md(1-BWO)+1	8(BWO)			=	27.79	LBS/MOLE
G =		SQRT (TS / P	S / MS)			=	1.01	
VS =	8	35.49(CP)(G)(SQRT DEL	TA P)			69.97	FPS
Н =		0.002669	(VI TOT)			=	0.70	
J =	(DELTA	A H ABS) (VM)	(Y) / (TM)		=	2.61	
K –		(H) +	(J)				3.31	
% ISO =	((TS)(K)(1.	667))/ ((TIM	E)(VS)(P	S) (AN))		==	108.5	Qło
Qs =	3600(1-BV	VO) (VS) (AS) (1	7.64) (PS)/(TS)		-	3826163	DSCFH
	(2.205)154 (MNT) (11 (11 (11 (11 (11 (11 (11 (VM CT	ן ע			1.09E-06	LBS/SUF
CS107800		/104 (MN) / (VM STD)	21			0.00741	GRAINS/SCF
CS E/8UZ =	CS · *	(20.97/) / (:* * /10 / °	20.9 = 0	2)			0.00/41	CDATHS/SUP
DMR =			(02)				0.00077 A 17	TRC/UD
E =	CS x FUEL	FACTOR X (20	9/(20.9-	802))			9,11/ 0,012	LBS/MMRTU

FACILITY: UNIT :	PINETREE FITC WOOD FIRED BC	HBURG ILER					RUN ID# : START TIME: END TIME:	Run 3 SB 11:20 11:22
DATE :	6-26-13	TRAV	DELTA	SQ	DELTA	DGM	DGM	STACK
		PT	Р	ROOT	Н	IN	OUT	TEMP
Ds (FT)	6.25	A1	0.92	0.96	1.84	95	95	370
As (SQFT)	30.68	2	0.95	0.97	1.90	96	96	373
Y =	1.0171	3	0.98	0.99	1,96	97	97	382
PIT COEFF	0.84	4	0.95	0.97	1.90	98	98	383
Dn (IN)	0.250	5	0.93	0.96	1.86	98	98	383
An (SQFT)	0.00034	6	0.94	0.97	1.88	99	99	385
IMP-1 (INT)	100	7	0.80	0.89	1.60	99	99	386
IMP-2 (INT)	100	8	0.88	0.94	1.76	100	100	385
IMP-3 (INT)	0	9	0.93	0.96	1.86	100	100	384
IMP-4 (INT)	550	10	0.90	0.95	1.80	99	99	384
IMP-1 (FIN)	278	11	0.84	0.92	1.68	99	99	382
IMP-2 (FIN)	163	12	0.70	0.84	1.40	99	99	376
IMP-3 (FIN)	13	В1	0.97	0.98	1.94	99	99	382
IMP-4 (FIN)	565.3	2	0.97	0.98	1.94	99	99	380
% CO2 (OUT)	14.03	3	0.95	0.97	1.90	99	99	385
% O2 (OUT)	6.14	4	1.00	1.00	2.00	99	99	383
욱 CO (OUT)	0.08	5	1.05	1.02	2.10	99	99	369
% N2 (OUT)	79.75	6	1.05	1.02	2.10	99	99	368
		7	1.00	1.00	2.00	98	98	368
		8	1.05	1.02	2.10	97	97	365
P BAR	29.78	9	1.00	1.00	2.00	97	97	366
PSTK	-0.69	10	0.96	0.98	1.92	97	97	367
FINAL METER	568.422	11	0.92	0.96	1.84	97	97	367
INT METER	520.700	12	0.82	0.91	1.64	97	97	365
MID CHECK	0.000	AVG:	0.94	0.97	1.87	98.2	98.2	376.6
VM (CF)	47.722	TS ('R)=		836.6	DELTA	H (ABS)		29.92
RUN TIME	60	TM $\langle F \rangle =$		98.2	PS (A	ABS)	=	29.73
F-FACTOR	11022	TM ('R)=		558.2	VI (1	(TOY		269.3
SAMPLE	FILTER	BEAKER		SAMPLE		FILTER	BEAKER	
NUMBER	3592	23		NUMBER		3593	30	
FINAL WT.	0.3629	64.4695		FINAL W	г.	0.3376	66.8444	
TARE WT.	0.3419	64.4558		TARE WT		0.3377	66.8442	
NET WT.	0.0210	0.0137		NET WT.		-0.0001	0.0002	
SAMPLE BEAKER	VOLUME	70	m1	BLANK BI	EAKER VOI	LUME	100	ml
TOTAL SAMPLE (GAIN	34.70	mg	ACETONE	RESIDUE		0.14	mg
TOTAL SAMPLE (GAIN LESS ACETO	ONE RESIDUE (Mn)				34.56	mg
VM STD =	17.64 (VM)	(Y) (DELTA	H ABS) /	(TM)			45.89	DSCF
VW STD =		.04707 (VI	TOT)			-	12.68	CF
BWO =	(VW STD)/(VW	STD)+(VM	(STD)			0.216	
Md (DRY) =	.44(%CO2)+.	32(%02)+.28(%CO)+.28	(%N2)			30.49	LBS/MOLE
Ms (WET) =		Md(1-BWO)+1	8(BWO)			=	27.79	LBS/MOLE
G =		SQRT (TS / P	S / MS)				1.01	
VS =	8	5.49(CP)(G)(SQRT DEL	TA P)			69.84	FPS
н =		0.002669	(VI TOT)				0.72	
J =	(DELTA	HABS) (VM)	(Y) / (TM)		_	2.60	
К =		(H) +	(J)			=	3.32	
% ISO =	((TS)(K)(1.	667))/ ((TIM	E)(VS)(P	S)(AN))			109.0	00
Qs =	3600(1-BW	O)(VS)(AS)(1	7.64)(PS)/(TS)			3788846	DSCFH
CS =	(2.205	x10-6) (MN)	/ (VM ST	D)		=	1.66E-06	LBS/SCF
CS' =	.0	154 (MN) / (VM STD)				0.01160	GRAINS/SCF
CS'07%02 =	CS' *	(20.9-7) / (20.9 - 0	2)			0.01092	GRAINS/SCF
CS'@12%CO2=	CS	:' * (12 / %	CO2)			=	0.00992	GRAINS/SCF
PMR =		CS X Qs				200	6.29	LBS/HR
<u>E</u> =	CS x FUEL	FACTOR X(20.	9/(20.9-	-%02))			0.018	LBS/MMBTU

Pinetree Power Fitchburg PRORATED SOOT BLOW PARTICULATE RESULTS LB/MMBTU

SOOTBLOW CALCULATION:

E = (E(SB) X ((A+B)XS) / AXR)) + (E(NOSB) X ((R-S/R) - (BXS/AXR)))

E = LB/MMBTU of particulate

E(SB) = average E of sample(s) containing blowing	0.018
E(NOSB) = average E of sample(s) with no sootblowing	0.011
A = hours sootblowing during sample(s) containing sootblowing	0.42
B = hours not sootblowing during sample(s) containing sootblowing	1.58
R = average hours of operation per 24 hours	24
S = average hours of soot blowing per 24 hours	1.26

E = (overall sootblow prorated average for all runs)

0.013

RYEGATE POWER STATION PRORATED SOOT BLOW PARTICULATE RESULTS LB/HR

SOOTBLOW CALCULATION:

E = (E(SB) X ((A+B)XS) / AXR)) + (E(NOSB) X ((R-S/R) - (BXS/AXR)))

E = LB/HR of particulate

E(SB) = average E of sample(s) containing blowing	6.29
E(NOSB) = average E of sample(s)with no sootblowing	3.83
A = hours sootblowing during sample(s) containing sootblowing	0.42
B = hours not sootblowing during sample(s) containing sootblowing	1.58
R = average hours of operation per 24 hours	24
S = average hours of soot blowing per 24 hours	1.26

4.45

$\mathbf{E} = 0$	(overall	sootblow	prorated	average	for	all	runs)	
------------------	----------	----------	----------	---------	-----	-----	-------	--

Appendix C

FACILITY: UNIT : DATE :	P W 6	Pinetree Fitc Wood Fired Bo Wight Jack Strain Strai	chburg Diler				S	RUN ID# : TART TIME: END TIME:	1 13:30 15:36
Ds (FT)		6.25	TRAV	DELTA	SO	DELTA	DGM	DGM	STACK
As (SOFT)		30 68	PT PT	P	ROOT	н	TN	OUT	TEMP
V =		1 017	53	1 10	1 05	0 34	96	96	371
		0 77	2	1 15	1,00	0.34	96	96	370
DD (TN)		0.166	2	1.10	1.07	0.34	00	00	376
DII (IN)		0.100	2	1 00	1.07	0.34	50	00	370
An (SQFT)	en i	0.00015	4	1.00	1.00	0.34	98	90	370
IMP-1 (IN	T)	0	5	1.00	1.00	0.34	98	98	377
IMP-2 (IN	T)	0	6	0.90	0.95	0.34	99	99	3/6
IMP-3 (IN	T)	100	BI	1.00	1.00	0.34	99	99	374
IMP-4 (IN	T)	550	2	1.10	1.05	0.34	98	98	373
IMP-1 (FI	N)	185	3	1.50	1.22	0.34	99	99	372
IMP-2 (FI	N)	1	4	1.10	1.05	0.34	99	99	367
IMP-3 (FI	N)	113	5	1.00	1.00	0.34	98	98	365
IMP-4 (FI	N)	565.0	6	0.95	0.97	0.34	98	98	364
% CO2 (OU	Т)	13.01							
% O2 (OU	Т)	7.02							
% CO (OU	T)	0.04							
% N2 (OU	Т)	79.93							
F-FACTOR		11022							
P BAR		29.78							
PSTK		-0.68							
FINAL MET	ER	607.770							
INT METER		568.700	AVG:	1.08	1.04	0.34	98.00	98.00	371.75
MID LEAK	СК	0.000	TS ('R)=		831.8	DELTA	H (ABS) =		29.81
VM (CF)		39.070	TM ('F) =		98.0	PS (A	(BS) =		29.73
RUN TIME		120.00	TM ('R)=		558.0	VI (1	OT) =		214.0
CAMPLE		DELMED					NOT CANDLE	TOT DIANK	VOL CODD
SAMPLE	(D 17)	FILTER	BEAKER		BLANK		VOL SAMPLE	VOL BLANK	VOL CORR.
PARTICULA	TE	4 0	1 7		RESIDUE		(mr)	(IIII)	RESIDUE
WEIGHI (M	.g)	4.2	1./		0.20		60	100	0.12
TOTAL SAM	PLE	GAIN LESS AG	CETONE RESI	DUE (Mn)	/ (m M)			5.78	mg
VM CUD		17.04 (VM)	, (I) (DED12	a II ADS)	/ / 1 14/			10 07	0501 1301
AMO PRO	_							10.07	ÇE
DWU (DDV)	_	11(2000)	30/60011 0	0/8001	00/2M701			30 26	
Ma (DKI)		· 44 (SUUZ)+	. JZ (802) +. 21	> (るし∪) +.	20(5NZ)		-	06.00	LDO/MOLE
MS (WET)	=						=	2/./4	TR2/MOTE
G							=	1.00	
v 5 	**							00.53	FPS
H.	-				(0.57	
J		(DELTA	ан ABS) (VI	⊻I) (Y) /	('T'M')			2.12	
K	=	· · · · · · · · · · · · · · · · · · ·	C (D)) / / / -				=	2.69	<u>^</u>
* 180		((TS)(K)(1	.66/))/ ((T	IME) (VS)	(PS) (AN))			101.6	ok
Qs		3600(1-B	WO)(VS)(AS)	(17.64)	(PS)/(TS)		=	3760348	DSCFH
CS	=	(2.20	5x10-6) (MN) / (VM	STD)			3.40E-07	LBS/SCF
CS'	=	• (0154 (MN) /	(VM STI)		=	0.00238	GRAINS/SC
CS'@7%02	-	CS፣ *	(20.9-7) /	(20.9 -	- 02)			0.00238	GRAINS/SC
CS'012%CO	2=	C	5' * (12 /	% CO2)			222	0.00219	GRAINS/SC
PMR	=		CS X Q	5				1.28	LBS/HR
E		CS x F	UEL FACTOR :	X(20.9/	(20.9-%02))		0.0056	LBS/MMBT(

FACILITY: UNIT : DATE :	Pinetree Fitc Wood Fired Bo 6/27/2013	hburg iler					RUN ID# : START TIME: END TIME:	2 08:20 10:24
Ds (FT) As (SQFT) Y = PIT COEFF Dn (IN) An (SQFT) IMP-1 (INT) IMP-2 (INT) IMP-3 (INT) IMP-4 (INT) IMP-4 (INT) IMP-2 (FIN) IMP-3 (FIN) IMP-3 (FIN) IMP-4 (FIN) % CO2 (OUT) % CO (OUT) % N2 (OUT) F-FACTOR	$\begin{array}{c} 6.25\\ 30.68\\ 1.017\\ 0.77\\ 0.166\\ 0.00015\\ 0\\ 0\\ 100\\ 550\\ 194\\ 0\\ 102\\ 559.9\\ 12.62\\ 7.48\\ 0.00\\ 79.90\\ 11022\end{array}$	TRAV PT Al 2 3 4 5 6 81 2 3 4 5 6	DELTA P 1.10 1.15 1.00 1.00 1.00 0.95 0.95 1.10 1.15 1.10 0.95	SQ ROOT 1.05 1.07 1.07 1.00 1.00 1.00 0.97 1.05 1.07 1.05 0.97	DELTA H 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	DGM IN 91 95 98 101 102 104 107 108 109 110 112 113	DGM OUT 91 95 98 101 102 104 107 108 109 110 112 113	STACK TEMP 355 366 369 370 370 366 365 366 365 365 365 365 365
P BAR PSTK	29.80 -0.72							
FINAL METER INT METER MID LEAK CK VM (CF) RUN TIME	647.790 608.400 0.000 39.390 120.00	AVG: TS ('R)= TM ('F)= TM ('R)=	1.05	1.02 825.4 104.2 564.2	0.35 DELT PS VI	104.17 FA H (ABS) (ABS) (TOT)	104.17 = =	365.42 29.83 29.75 205.9
SAMPLE PARTICULATE	FILTER	BEAKER		BLANK RESIDUE		VOL SAMPI (ml)	LE VOL BLANK (ml)	VOL CORR. RESIDUE
WEIGHT (mg)	4.3	2.6		0.30		60	100	0.18
TOTAL SAMPL VM STD = VW STD = BWO =	E GAIN LESS AC 17.64 (VM)	ETONE RESI (Y) (DELTA	DUE (Mn) A H ABS)	/ (TM)			6.72 37.36 9.69	mg DSCF CF
Md (DRY) = Ms (WET) = G =	.44(%CO2)+.	32(%02)+.28	3(%CO)+.	28(%N2)			30.32 27.78 1.00	LBS/MOLE LBS/MOLE
VS = H = J =	(DELTA	.H ABS) (VI	4) (Y) /	(TM)			67.36 0.55 2.12	FPS
K = % ISO =	((TS)(K)(1.	667))/ ((T	IME)(VS)	(PS) (AN))			2.67	20
Qs = CS = CS' = CS'@7%02 = CS'@12%C02= PMR =	3600(1-BW (2.205 .0 CS' * CS	O)(VS)(AS) x10-6)(MN) 154(MN)/ (20.9-7)/ '*(12/3 CS X QS	(17.64)() / (VM (VM STE (20.9 - & CO2) S	PS)/(TS) STD))) - O2)			3755628 3.97E-07 0.00277 0.00287 0.00263 1.49	DSCFH LBS/SCF GRAINS/SCF GRAINS/SCF GRAINS/SCF LBS/HR
E =	CS x FU	VEL FACTOR 2	X(20.9/	(20.9-%02)))	==	0.0068	LBS/MMBTU

FACILITY: UNIT : DATE :	Pinetree Fito Wood Fired Bo 6/27/2013	chburg Diler					RUN ID# : START TIME: END TIME:	3 10:50 12:52
Ds (FT) As (SQFT) Y = PIT COEFF Dn (IN) An (SQFT) IMP-1 (INT) IMP-2 (INT) IMP-3 (INT) IMP-4 (INT) IMP-4 (INT) IMP-2 (FIN) IMP-3 (FIN) IMP-3 (FIN) % CO2 (OUT) % C0 (OUT) % N2 (OUT)	6.25 30.68 1.017 0.77 0.166 0.00015 0 100 550 177 2 108 561.9 12.25 7.91 0.00 79.84 11022	TRAV PT B1 2 3 4 5 6 A1 2 3 4 5 6	DELTA P 0.90 1.00 1.15 1.15 1.00 0.95 1.05 1.15 1.00 0.95	SQ ROOT 0.95 1.00 1.07 1.07 1.07 1.00 0.97 1.02 1.07 1.00 0.97	DELTA H 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	DGM IN 112 111 112 112 112 113 113 114 114 115 117 117	DGM OUT 112 112 111 112 112 113 113 113 113 114 114 115 117 117	STACK TEMP 360 358 358 358 358 358 355 357 358 356 355 355 354
P BAR PSTK	29.60 -0.65							
FINAL METER INT METER MID LEAK CK VM (CF) RUN TIME	687.650 648.000 0.000 39.650 119.50	AVG: TS ('R)= TM ('F)= TM ('R)=	1.03	1.02 817.3 113.5 573.5	0.35 DELT PS VI	113.50 FA H (ABS) (ABS) (TOT)	113.50 = = =	357.25 29.63 29.55 198.9
SAMPLE PARTICULATE	FILTER	BEAKER		BLANK RESIDUE		VOL SAMPI (ml)	LE VOL BLANK (ml)	VOL CORR. RESIDUE
WEIGHT (mg)	4.0	1.0		0.30		60	100	0.18
TOTAL SAMPLI VM STD = VW STD =	E GAIN LESS AG 17.64 (VM)	CETONE RESI (Y) (DELT)	DUE (Mn) A H ABS)) / (TM)		=	4.82 36.75 9.36	mg DSCF CF
BWO = Md (DRY) = Ms (WET) = G = VS =	.44(%CO2)+.32(%O2)+.28(%CO)+.28(%N2)					=	0.203 30.28 27.78 1.00 66.70	LBS/MOLE LBS/MOLE
H = J = K =	(DELTA	AHABS) (VI	M) (Y) /	(TM)		=	0.53 2.08 2.61	115
% ISO =	((TS)(K)(1.	.667))/ ((T	IME) (VS)	(PS) (AN))		=	100.6	0
Qs = CS = CS'@7%02 = CS'@12%C02 = PMR = E =	3600(1-BWO)(VS)(AS)(17.64)(PS)/(TS) (2.205x10-6)(MN)/(VM STD) .0154(MN)/(VM STD) CS'*(20.9-7)/(20.9-02) CS'*(12/%CO2) CS X QS						3744749 2.89E-07 0.00202 0.00216 0.00198 1.08 0.0051	DSCFH LBS/SCF GRAINS/SCF GRAINS/SCF LBS/HR LBS/MMPTU
Appendix D

Ds (FT) 6.25 TRAV DELTA SQ DELTA DGM As (SQFT) 30.68 PT P ROOT H IN Y = 1.017 A1 1.10 1.05 0.34 96 PIT COEFF 0.77 2 1.15 1.07 0.34 96	DGM 5 OUT 96 98 98 98 98 98 99	STACK TEMP 371 370 376 376
Dn (IN) 0.166 3 1.15 1.07 0.34 98 An (SQFT) 0.00015 4 1.00 1.00 0.34 98 IMP-1 (INT) 0 5 1.00 1.00 0.34 98 IMP-2 (INT) 0 6 0.90 0.95 0.34 99 IMP-3 (INT) 100 B1 1.00 1.00 0.34 99 IMP-4 (INT) 550 2 1.10 1.05 0.34 98 IMP-1 (FIN) 185 3 1.50 1.22 0.34 99 IMP-2 (FIN) 1 4 1.10 1.05 0.34 99 IMP-3 (FIN) 113 5 1.00 1.00 0.34 98 IMP-4 (FIN) 565 6 0.95 0.97 0.34 98 IMP-4 (FIN) 565 6 0.95 0.97 0.34 98 * CO2 (OUT) 13.01 * O2 (OUT) 7.02 * CO (OUT) 0.04 * N2 (OUT) 79.93 F-FACTOR 11022	99 98 99 99 98 98	377 376 374 373 372 367 365 364
P BAR 29.78 PSTK -0.68		
FINAL METER 607.770 INT METER 568.700 AVG: 1.08 1.04 0.34 98.00 MID LEAK CK 0.000 TS ('R)= 831.8 DELTA H (ABS) = VM (CF) 39.070 TM ('F)= 98.0 PS (ABS) = RUN TIME 120.00 TM ('R)= 558.0 VI (TOT) =	98.00 3 2 2 2	71.75 29.81 29.73 214.0
SAMPLEFILTERBEAKERBLANKVOL SAMPLEVOLPARTICULATERESIDUE(ml)WEIGHT (mg)0.05.80.2060	OL BLANK VO (ml) Ri 100 (L CORR. ESIDUE 0.12
TOTAL SAMPLE GAIN LESS ACETONE RESIDUE (Mn)=VM STD=VW STD=EWO===	5.68 37.44 10.07 0.212	mg DSCF CF
Md (DRY) = .44(%CO2)+.32(%O2)+.28(%CO)+.28(%N2) = Ms (WET) = = G = = VS = = U = =	30.36 LE 27.74 LE 1.00 68.53 0.57	BS/MOLE BS/MOLE FPS
H = = = = = = = = = = = = = = = = = = =	2.12 2.69 101.6	qto
$\begin{array}{rcl} Qs &=& 3600(1-BWO)(VS)(AS)(17.64)(PS)/(TS) &=& 35\\ CS &=& (2.205 \times 10-6)(MN)/(VMSTD) &=& 35\\ CS' &=& .0154(MN)/(VMSTD) &=& 35\\ CS' (27\%02 &=& CS'\times(20.9-7)/(20.9-02) &=& 35\\ CS' (212\%C02 &=& CS'\times(12/\%CO2) &=& 35\\ CS' (212\%C02 &=& CS'\times(12/\%CO2) &=& 35\\ PMR &=& CSXQS &=& 35\\ PMR &=& CSXXX &=& 35\\ PMR $	3760348 3.35E-07 1.0.00234 0.00234 0.00234 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.27 1	DSCFH BS/SCF AINS/SCF AINS/SCF AINS/SCF LBS/HR

FACILITY: UNIT : DATE :	Pinetree Fitch Wood Fired Bo: 6/27/2013	nburg iler					RUN ID# : START TIME: END TIME:	2 08:20 10:24
Ds (FT) As (SQFT) Y = PIT COEFF Dn (IN) An (SQFT) IMP-1 (INT) IMP-2 (INT) IMP-3 (INT) IMP-4 (INT) IMP-4 (INT) IMP-2 (FIN) IMP-2 (FIN) IMP-4 (FIN) % CO2 (OUT) % CO (OUT) % N2 (OUT)	6.25 30.68 1.017 0.77 0.166 0.00015 0 100 550 194 0 102 560 12.62 7.48 0.00 79.90	TRAV PT A1 2 3 4 5 6 81 2 3 4 5 6	DELTA P 1.10 1.15 1.00 1.00 1.00 0.95 1.10 1.15 1.10 0.95	SQ ROOT 1.05 1.07 1.07 1.00 1.00 1.00 1.00 1.05 1.05 1.05 0.97	DELTA H 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	DGM IN 91 95 98 101 102 104 107 108 109 110 112 113	DGM OUT 91 95 98 101 102 104 107 108 109 110 112 113	STACK TEMP 355 366 369 370 370 366 365 366 365 365 365 365 365
F-FACTOR P BAR PSTK	11022 29.80 -0.72							
FINAL METER INT METER MID LEAK CK VM (CF) RUN TIME	647.790 608.400 0.000 39.390 120.00	AVG: TS ('R)= TM ('F)= TM ('R)=	1.05	1.02 825.4 104.2 564.2	0.35 DEL PS VI	104.17 IA H (ABS) (ABS) (TOT)	104.17 = =	365.42 29.83 29.75 205.9
SAMPLE PARTICULATE WEIGHT (mg)	FILTER 0.0	BEAKER 6.4		BLANK RESIDUE 0.30		VOL SAMP: (ml) 70	LE VOL BLANK (ml) 100	VOL CORR. RESIDUE 0.21
TOTAL SAMPL VM STD = VW STD = BWO = Md (DRY) = Ms (WET) =	E GAIN LESS AC 17.64 (VM) .44(%CO2)+.	ETONE RESI (Y) (DELT 32(%02)+.2	DUE (Mn) A H ABS) 8(%CO)+.	/ (TM) 28(%N2)			6.19 37.36 9.69 0.206 30.32 27.78	mg DSCF CF LBS/MOLE LBS/MOLE
G = VS = H = J = K = % ISO =	(DELTA ((TS)(K)(1.	H ABS) (V 667))/ ((T	M) (Y) / IME)(VS)	(TM) (PS)(AN))	ı		1.00 67.36 0.55 2.12 2.67 101.6	FPS %
Qs = CS = CS' = CS'@7%02 = CS'@12%C02 = PMR = E =	3600(1-BW (2.205. 0 CS' * CS CS x FU	0)(VS)(AS) x10-6)(MN 154(MN)/ (20.9-7)/ '*(12/ CS X Q EL FACTOR	(17.64)) / (VM (VM STI (20.9 - % CO2) s X(20.9/	(PS)/(TS) STD))) - O2) (20.9-%02			3755628 3.65E-07 0.00255 0.00264 0.00243 1.37 0.0063	DSCFH LBS/SCF GRAINS/SCF GRAINS/SCF GRAINS/SCF LBS/HR LBS/MMBTU

FACILITY: UNIT : DATE :	Pinetree Fitc Wood Fired Bo 6/27/2013	hburg iler					RUN ID# : START TIME: END TIME:	3 10:50 12:52
Ds (FT) As (SQFT) Y = PIT COEFF Dn (IN) An (SQFT) IMP-1 (INT) IMP-2 (INT) IMP-3 (INT) IMP-4 (INT) IMP-4 (INT) IMP-2 (FIN) IMP-3 (FIN) IMP-4 (FIN) % CO2 (OUT) % CO2 (OUT)	6.25 30.68 1.017 0.77 0.166 0.00015 0 0 100 550 177 2 108 561.9 12.25 7.91 0.00 7.94	TRAV PT B1 2 3 4 5 6 A1 2 3 4 5 6	DELTA P 0.90 1.00 1.15 1.15 1.00 0.95 1.05 1.15 1.15 1.00 0.95	SQ ROOT 0.95 1.00 1.07 1.07 1.00 0.97 1.02 1.07 1.07 1.00 0.97	DELTA H 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	DGM IN 112 112 111 112 112 113 113 113 114 114 114 115 117 117	DGM OUT 112 112 111 112 112 113 113 113 114 114 114 115 117 117	STACK TEMP 360 358 358 358 358 355 357 358 355 357 358 356 355 354
F-FACTOR	29.60							
PSTK	-0.65							
FINAL METER INT METER MID LEAK CK VM (CF) RUN TIME	687.650 648.000 0.000 39.650 119.50	AVG: TS ('R)= TM ('F)= TM ('R)=	1.03	1.02 817.3 113.5 573.5	0.35 DEL' PS VI	113.50 TA H (ABS) (ABS) (TOT)	113.50 = = =	357.25 29.63 29.55 198.9
SAMPLE PARTICULATE WEIGHT (mg)	FILTER 0.0	BEAKER 4.6		BLANK RESIDUE 0.30		VOL SAMPI (m1) 70	LE VOL BLANK (ml) 100	VOL CORR. RESIDUE 0.21
TOTAL SAMPL VM STD = VW STD =	E GAIN LESS AG 17.64 (VM)	CETONE RESI (Y) (DELT	DUE (Mn) A H ABS)) / (TM)		= = =	4.39 36.75 9.36	mg DSCF CF
Md (DRY) = Ms (WET) = G = VS =	.44(%CO2)+.	.32(%02)+.2	8(%CO)+.	.28(%N2)		=	30.28 27.78 1.00 66.70	LBS/MOLE LBS/MOLE FPS
H == J == K == % ISO ==	(DELTA	A H ABS) (V .667))/ ((T	M) (Y) / IME)(VS)	(TM)		=	0.53 2.08 2.61 100.6	8
Qs = CS = CS' = CS'@7%02 = CS'@12%C02= PMR = E =	3600(1-BV (2.205 .(CS' * CS × FI	NO) (VS) (AS) 5×10-6) (MN) 0154 (MN) / (20.9-7) / 5' * (12 / CS X Q UEL FACTOR	(17.64)) / (VM (VM STI (20.9 - % CO2) s X(20.9/	(PS) / (TS) STD) D) - O2) (20.9-%02))		3744749 2.63E-07 0.00184 0.00197 0.00180 0.99 0.0047	DSCFH LBS/SCF GRAINS/SCF GRAINS/SCF GRAINS/SCF LBS/HR LBS/MMBTU

Appendix E

Location:Pinetree Fitchburg Start Time:13:30:00 RUN No1															
	Date:	26-Jun-2013				End	d Time:	15:36	5:00		JOB No.				
	STACK	(DATA		EQUIF	PMENT			ESTI	MATES			+/- 50	°F ∆H		
% M	oisture:	% est.	METER	R BOX:		1	Ts (°F):	371.8	Tm (°F):	98	Ts-50°	316.9167	Ts+50°	416.9167	
Baro	ometric:	29.78 in Hg		Y:	1.017		E	st. Qs:	0.6152	cfm	Est. Qs:	0.6386	Est. Qs:	0.6618	
Statio	Press:	-0.68 in H ₂ O		<u>ΔH@:</u>	1.660	in H ₂ O		Est. μ _s :	229.45	mpoise	Est. μ _s :	214.787	Est. μ _s :	237.3313	
Staci	(Press:	29.73 in Hg	Cp':	0.770	S/N	899	E	ist. ∆H:	0.321	in H ₂ O	Est. AH:	0.364	Est. ∆H:	0.286	
	%CU ₂ :	770 %		0.770	5/N	inchoo		Ainitial	0	LEA		<u>snð</u>	~5		
0,		70 02 %	Stac		20.7	inches			0		1 0		of		
1	M	30.36 lb/lb-mole	t at	n Aica. Pointe:	12	noints Time 1				1	min				
	Est. M:	27.89 lb/lb-mole	Rur	n Time:	120.00	min	Lea	ik Rate	0.00	000	0.0		cfm		
	T _{std} :	528 °R		P _{std} :	29.92	in Hg	v	acuum	1	5		5	in. Ha		
		Dry Gae	Ditot	Gas To	mneratu	ree (°E)	Orifica	Proce	Dump		Gae Ton	ine	1	****	8
nple	Time	Meter			GM		AH (in	1 H ₂ 0)	Vac		°F)	Imn	∩e	Dro rao	Dra
Sar Pc	(min)	Reading (ft ³)	("H ₂ O)	Inlet	Outlet	Stack	Ideal	Actual	(in Ha)	Probe	Filter	Exit	(acfm)		12.5 uml
1	10.25	568.7000	1.100	96.0	96.0	371	0.316	0.340	1	250	249	66	0.6133	10.47	2.53
2	20.75	572.0000	1.150	96.0	96.0	370	0.317	0.340	1	250	246	65	0.6342	10.21	2.42
3	31.25	575.5000	1.150	98.0	98.0	376	0.313	0.340	1	250	230	64	0.6365	10.24	2.44
4	41.00	579.0000	1.000	98.0	98.0	376	0.313	0.340	1	250	249	62	0.6267	10.36	2.48
5	50.75	582.2000	1.000	98.0	98.0	377	0.313	0.340	1	250	246	61	0.6274	10.36	2.48
6	60.00	585.4000	0.900	99.0	99.0	376	0.314	0.340	1	250	248	61	0.5976	10.71	2.63
7	69.75	588.3000	1.000	99.0	99.0	374	0.315	0.340	1	250	250	64	0.6241	10.37	2.49
8	80.00	591.5000	1.100	98.0	98.0	373	0.316	0.340	1	250	251	65	0.6125	10.50	2.54
9	90.50	594.8000	1.500	99.0	99.0	372	0.317	0.340	1	250	251	65	0.6142	10.46	2.53
10	100.75	598.2000	1.100	99.0	99.0	367	0.321	0.340	1	250	248	65	0.6070	10.50	2.54
11	110.50	601.5000	1.000	98.0	98.0	365	0.322	0.340	1	250	242	66	0.6184	10.35	2.47
12	120.00	604.7000	0.950	98.0	98.0	364	0.322	0.340		250	246	6/	0.6082	10.46	2.52
1/	-	007.7700					-							-	
15										[
16	-													-	
17	-				<u> </u>		-						-	-	-
18							-						-	-	-
19	-						-						-	-	-
20	-						-						-	-	-
21	-				ļ								-	-	-
22	-						-						-	-	-
23	-						-			ļ	_		-	-	
24	_									[-	~	-
	I														
Actu	ol Dum					Т		T		May	****				
Ti	me	V _m	Δ	P (avç	g)	557 7	(avg)	831 A	(avg)	Vac	ΔH	(avg)		V _{s (avg)}	X S S S S S S S S S S S S S S S S S S S
120.00	min	29 070 05	1 070	in H.O		001.1	0E	274 0	0E	4 vac.	0.240	in LI O	69	220	*20
<u>L120.00</u>	11111	33.070 01	1.073	111120		90.0		371.0	Г ⁻		0.340	m 11 ₂ 0	00		iha
	Test Personnel (signature/date) Project Leader (signature/date)														

Spreadsheet for U.S. EPA Method 201A - Determination of Filterable PM10 and PM2.5 Emissions TEST DATA SHEET

Location: Pinetree Fitchburg Start Time: 8:20:00 RUN No. 2															
	Date:	27-Jun-2013				End	d Time:	10:24	:00	•	JOB No.				
	STACK	DATA		EQUIP	MENT			ESTIN	MATES			+/- 50)°F ∆H		
% M	oisture:	20.6 % est.	METE	R BOX:		1	Ts (°F):	365	Tm (°F):	104	Ts-50°	321.42	Ts+50°	421.42	
Baro	ometric:	29.80 in Hg		Y:	1.017		E	st. Qs:	0.6152	cfm	Est. Qs:	0.6396	Est. Qs:	0.6627	
Static	Press:	-0.72 in H ₂ O		∆H@:	1.660	in H ₂ O		Est. μ _s :	229.45	mpoise	Est. μ _s :	215.82	Est. μ _s :	238.33	
Stack	(Press:	29.75 in Hg	Cp':	0.770	S/N	-	<u> </u>	st. ∆H:	0.321	in H ₂ O	Est. ∆H:	0.360	Est. ∆H:	0.283	24200000
	%CO ₂ :	12.62 %	Cp:	0.770	S/N	-		5 I 14 I.a. I		LEAK	CHECI	15			
0/	%U2:	70 00 %	NOZ.		20.7	incnes		i inittai Miliopal			0				
	M.:	79.90 70	the state	n Alea. Pointe	12	n noints	00	Timo	1			1	min		
	Est. M:	27.78 ib/lb-mole	Rui	n Time:	120.00	min	Leak Rate 0.0000			0.0	000	cfm			
	T _{std} :	528 °R	leconsecutor	P _{std} :	29.92	in Hg	Vacuum 15				5	in. Hg			
	Clock	Dry Gas	Pitot	Gas Te	mperatu	res (°F)	Orifice	Press	Pump	1	Gas Tem	DS	1	795007-0111-012000	3
mple oint	Time	Meter	ΔΡ	DC	SM		∆H (ir	1 H ₂ 0)	Vac.	(°F)	Imp.	Qs	D ₅₀	D ₅₀
Sa	(min)	Reading (ft ³)	("H₂O)	Inlet	Outlet	Stack	Ideal	Actual	(in Hg)	Probe	Filter	Exit	(acfm)	[10 µm]	[2.5 um]
1	10.25	608.4000	1.100	91.0	91.0	355	0.326	0.340	2	250	250	65	0.6254	10.16	2.39
2	20.75	611.8000	1.150	95.0	95.0	366	0.319	0.340	2	250	251	62	0.6142	10.40	2.49
3	31.25	615.2000	1.150	98.0	98.0	369	0.319	0.340	2	250	248	63	0.6132	10.45	2.52
4	41.00	618.6000	1.000	101.0	101.0	370	0.320	0.340	3	250	247	64	0.6189	10.39	2.49
5	50.75	621.8000	1.000	102.0	102.0	370	0.320	0.340	3	250	249	64	0.6178	10.40	2.50
6	60.50	625.0000	1.000	104.0	104.0	366	0.325	0.340	3	250	250	64	0.6127	10.42	2.50
/	70.00	628.2000	0.950	107.0	107.0	365	0.327	0.340	3	250	251	62	0.6052	10.50	2.54
<u> </u>	79.50	634 4000	1 100	100.0	108.0	366	0.327	0.340	3	250	251	60	0.6048	10.52	2.54
10	100.25	637 7000	1 1 1 50	1.100 109.0 109.0 366 1.150 110.0 110.0 365			0.329	0.340	4	250	250	65	0.5974	10.03	2.53
10	110.50	641,1000	1.100	1.150 110.0 110.0 365 1.100 112.0 112.0 365			0.330	0.360	4	250	248	66	0.6278	10.23	2.42
12	120.00	644.6000	0.950	113.0	113.0	362	0.333	0.360	4	250	248	66	0.6140	10.37	2.48
13	-	647.7900					-					1	-	-	-
14	-						-						-	-	-
15	-						-						-	-	-
16	-			ļ			-			L			-	-	-
17											<u> </u>	<u> </u>	-	-	-
18	-		 				~						-	-	-
20							-						-	-	-
20			<u> </u>										-		
22							-						-	-	-
23	-						-					1	-	-	-
24									-						
	and a second sec									need the second s					
Province				*******		tinger				R. A	*****				
Actua	al Run me	Vm	Z	AP (avç	J)	1m	(avg)	825 4	(avg) °D		ΔH	(avg)		V _{s (avg)}	
120.00	min	39.390 cf	1.050	in H ₂ O		104.2	°F	365.4	°F	4 vac.	0.344	in H₂O	67.	220	fps
			1												
							a								
	Test Personnel (signature/date) Project Leader (signature/date)														

Spreadsheet for U.S. EPA Method 201A - Determination of Filterable PM10 and PM2.5 Emissions TEST DATA SHEET

Location: Pinetree Fitchburg Start Time: 16:02:00 RUN No. 3															
	Date:	27-Jun-2013				Enc	d Time:	18:12	2:00		JOB No.				
	STACK	DATA		EQUIP	MENT	-		ESTII	MATES			+/- 50	°F ∆H		
% M	oisture:	20.3 % est.	METE	R BOX:		1	Ts (°F):	357.3	Tm (°F):	114	Ts-50°	315.09	Ts+50°	415.09	
Barc	ometric:	29.60 in Hg		Y:	1.017		E	st. Qs:	0.6152	cfm	Est. Qs:	0.6393	Est. Qs:	0.6626	
Statio	Press:	-0.65 in H ₂ O		∆H@:	1.660	in H ₂ O		Est. μ _s :	229.45	mpoise	Est. μ _s :	214.37	Est. μ _s :	236.93	
Stack	Press:	29.55 in Hg	Cp':	0.770	S/N	-	<u> </u>	st. ∆H:	0.321	in H₂O	Est. ∆H:	0.364	Est. ∆H:	0.285	
	%CO ₂ :	12.25 %	Cp:	0.770	S/N	-			ana ang ang ang ang ang ang ang ang ang	LEAK	CHECKS		1955-1950-1950-1950-1950-1950-1950-1950-		
0		7.91 %	NOZ	zie Dia:	0.1660	incnes		n initial	0		0		_ cf		
	M	30.28 lb/lb-mole	Siac # of	R Alea. Dointe	30.7	π ⁻	DG	Timo			,	J 1	Ci		
	Est. M:	27.78 lb/lb-mole	Ru	n Time:	119 50	min	Leak Rate 0.000		00	0.0	000	cfm			
	T _{std} :	528 °R		P _{std} :	29.92	in Ha	Vacuum 15			5	in. Ha				
Emergencies concerning and the second		Dry Gae	Ditot		mnorati		Orifica	Droce	Duran	1	Cae Tom	ne	1		
nple oint	Time	Meter			M			τιess. ι Η.Ο)	Vac		oas reini °F\	Imp		Dra	
Pc	(min)	Reading (ft ³)	("H ₂ O)	Inlet	Outlet	Stack	Ideal	Actual	(in Ha)	Probe	Filter	Fxit	(acfm)	5 0	50 [2.6m]
1	9.25	648.0000	0.900	112.0	112.0	360	0.332	0.350	2	250	247	67	0.6123	10.38	2.49
2	19.00	651.1000	1.000	112.0	112.0	360	0.332	0.350	2	250	248	62	0.6184	10.31	2.46
3	29.50	654.4000	1.150	111.0	111.0	358	0.333	0.350	2	250	249	60	0.6086	10.41	2.49
4	40.00	657.9000	1.150	112.0	112.0	358	0.333	0.350	2	250	248	62	0.6075	10.42	2.50
5	50.25	661.4000	1.100	112.0	112.0	358	0.333	0.350	2	250	249	62	0.6046	10.46	2.51
6	59.75	664.8000	0.950	113.0	113.0	358	0.334	0.350	3	250	250	64	0.5937	10.59	2.57
7	69.25	667.9000	0.950	113.0	113.0	355	0.336	0.360	3	250	248	67	0.5916	10.59	2.57
8	79.75	671.0000	1.050	114.0	114.0	357	0.335	0.360	3	250	248	62	0.5701	10.89	2.70
9	89.75	674.3000	1.150	114.0	114.0	358	0.335	0.360	3	250	250	61	0.6357	10.09	2.36
10	100.25	677.8000	1.150	.150 115.0 115.0 356 .000 117.0 117.0 355		0.337	0.360	3	250	250	60	0.5857	10.67	2.60	
11	110.00	681.2000	1.000	1.000 117.0 117.0 355			0.339	0.360	3	250	248	61	0.6093	10.37	2.48
12	119.50	687 6500	0.950	117.0	117.0	354	0.340	0.360	3	250		65	0.5962	10.52	2.54
14	-	007.0000		<u> </u>	· · · ·	ļ	-				[<u> </u>	-	-	
15	_						-								
16	-						-						_	-	-
17	-						-						-	-	-
18	-						-						-	-	-
19	~						-						-	-	-
20	-												-	-	-
21	-					ļ	-						-	-	-
22	-	· ·		ļ		ļ	-						-		
23	-					ļ	-					ļ	-	3m	
	-		partamente and a second			L	-						-		
Actus	Actual Pup														
Ti	me	Vm	Ľ	\P (avg	I)	573.2	°R	816.9	°R	Vac	ΔН (avg)		V _{s (avg)}	
119 50	min	39 650 cf	1 042	in H ₂ O		113.5	°F	357 3	°E	γ <u>α</u> υ. γ	n 355	in H ₋ O	[fne
			110112		0)=570070740770707	1.10.0		001.0			0.000				102
										incompanyin data					
	Test P	ersonnel (s	ignatu	re/date)				Project	Leade	r (sigi	nature/d	ate)		

Appendix F

CONDENSIBLE PARTICULATE EMISSION CALCULATION SHEET

FACILITY: UNIT : DATE :	Pinetree Fit Wood Fired B 6/26/2013	chburg oiler					RUN ID# : START TIME: END TIME:	1 13:30 15:36
Ds (FT) As (SQFT) Y = PIT COEFF Dn (IN) An (SQFT) IMP-1 (INT) IMP-2 (INT) IMP-3 (INT) IMP-4 (INT) IMP-4 (INT) IMP-2 (FIN) IMP-3 (FIN) IMP-4 (FIN) % CO2 (OUT) % CO (OUT) % N2 (OUT)	$\begin{array}{c} 6.25\\ 30.68\\ 1.017\\ 0.839\\ 0.166\\ 0.00015\\ 0\\ 100\\ 550\\ 185\\ 1\\ 113\\ 565.0\\ 13.01\\ 7.02\\ 0.04\\ 79.93\end{array}$	TRAV PT A1 2 3 4 5 6 81 2 3 4 5 6	DELTA P 1.10 1.15 1.00 1.00 0.90 1.00 1.10 1.50 1.10 1.00 0.95	SQ ROOT 1.05 1.07 1.07 1.00 1.00 1.00 1.05 1.22 1.05 1.00 0.97	DELTA H 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	DGM 96 96 98 98 99 99 99 99 99 99 98 99	DGM OUT 96 98 98 98 99 99 99 99 99 98 99 98 99	STACK TEMP 371 370 376 377 376 377 376 374 373 372 367 365 364
P BAR PSTK	29.78 -0.68							
INT METER MID LEAK CK VM (CF) RUN TIME	568.700 0.000 39.070 120.000	AVG: TS ('R)= TM ('F)= TM ('R)=	1.08	1.04 831.8 98.0 558.0	0.35 DELTA PS (AE VI (TC	98.00 H (ABS) 3S) 9T)	98.00 = =	371.75 29.81 29.73 214.0
SAMPLE CATCH	ORGANIC		INORGANI	3			BLANK	
(mg)	1.1	mg	5.2	mg			1.0	mg
MN = Total VM STD = VW STD = BWO =	Condensible Pa 17.64 (VM (VW STD)/(VW	articulate I) (Y) (DEL I STD)+(VM	(Blank C TA H ABS STD)	orrected)) / (TM)			5.30 37.44 10.07 0.212	mg DSCF CF
Md (DRY) = Ms (WET) = G =	.44(%CO2)+ Md(1-BWO)+ SQRT (TS /	32(%02)+. -18(BWO) PS / MS)	28(%CO)+	.28(%N2)			30.36 27.74 1.00	LBS/MOLE LBS/MOLE
VS = H = J = K =	85.49(CP)(G) 0.002669 (DELT (H) +	(SQRT DELT) (VI TOT) TA H ABS) ((J)	A P) VM) (Y)	/ (TM)			68.53 0.57 2.12 2.69	FPS
% ISO =	((TS)(K)(1	.667))/ ((TIME) (VS)(PS)(AN))		=	101.6	çiç
Qs = CS = CS'07%02 = CS'012%C02= PMR = E =	3600(1-E (2.20 CS' - CS x FUE	BWO) (VS) (AS 05x10-6) (M 0154 (MN) (20.9-7) CS' * (12 / CS X L FACTOR X ()(17.64) N) / (VM / (VM ST / (20.9 % CO2) Qs (20.9/(20	(PS)/(TS) STD) D) - O2)			3760354 3.12E-07 0.00218 0.00218 0.00201 1.17 0.0052	DSCFH LBS/SCF GRAINS/SCF GRAINS/SCF GRAINS/SCF LBS/HR LBS/MMBTU

CONDENSIBLE PARTICULATE EMISSION CALCULATION SHEET

FACILITY: UNIT : DATE :	Pinetree Fit Wood Fired E 6/27/2013	chburg oiler					RUN ID# : START TIME: END TIME:	2 08:20 10:24
Ds (FT) As (SQFT) Y =	6.25 30.68 1.017	TRAV PT Al	DELTA P 1.10	SQ ROOT 1.05	DELTA H 0.35	DGM IN 91	DGM OUT 91	STACK TEMP 355
PIT COEFF	0.77	2	1.15	1.07	0.35	95	95	366
DN (IN)	0.166	3	1.00	1.07	0.35	98 101	98 101	369
IMP-1 (INT)	0.00015	5	1.00	1.00	0.35	101	101	370
IMP-2 (INT)	0	6	1.00	1.00	0.35	104	104	366
IMP-3 (INT)	100	B1	0.95	0.97	0.35	107	107	365
IMP-4 (INT)	550	2	0.95	0.97	0.35	108	108	366
IMP-1 (FIN)	194	3	1.10	1.05	0.35	109	109	366
IMP-2 (FIN)	0	4	1.15	1.07	0.35	110 112	110	365
IMP-3 (FIN)	102 559 9	5	1.10	1.05	0.35	112	113	362
8 CO2 (OUT)	12.62	Ŭ,	0.95	0.97	0.00	115	110	562
% O2 (OUT)	7.48							
% CO (OUT)	0.00							
% N2 (OUT)	79.90							
F-FACTOR	11022							
P BAR	29-80							
PSTK	-0.72							
FINAL METER	647.790							
INT METER	608.400	AVG:	1.05	1.02	0.35	104.17	104.17	365.42
MID LEAK CK	0.000	TS('R) =		825.4	DELTA	H (ABS)		29.83
VM (CE) DIIN TTME	39.390	TM ('F) = TM ('P) =		104.2 564 2	PS (AE	ארדי אידי 1	=	29.75
NON TIME	120.000	111 (1()-		504.2	VI (IC	51)		200.9
SAMPLE CATCH	ORGANIC		INORGANIC	2			BLANK	
(mg)	1.0	mg	4.6	mg			1.0	mg
MN = Total	Condensible P	articulate	(Blank C	orrected)			4.60	mg
VM STD =	17.64 (VN	4) (Y) (DEL	TA H ABS)) / (TM)		==	37.36	DSCF
VW STD =			0.000				9.69	CF
BWO =	(VW STD)/(VW	V STD + (VM)	STD)	00/010101		=	0.206	
Ma (DRI) =	.44(8CUZ) Md(1-BWO)	32(302)+. -18(BWO)	20(500)+.	.20(3NZ)		=	27 78	LBS/MOLE
G =	SORT (TS /	PS / MS)					1.00	TD3/MOTE
VS =	85.49(CP)(G)	(SORT DELT	'A P)			=	67.36	FPS
Н =	0.002669	(VI TOT)	,				0.55	
J =	(DEL)	CA H ABS) (VM) (Y) ,	/ (TM)		=	2.12	
К =	(H) +	(J)				-	2.67	
% ISO =	((TS)(K)(1	L.667))/ ((TIME) (VS))(PS)(AN))			101.6	O ^I C
Qs =	3600(1-E	BWO)(VS)(AS)(17.64)	(PS)/(TS)		-	3755628	DSCFH
CS =	(2.20)5x10-6) (M	IN) / (VM	STD)			2.715E-07	LBS/SCF
CS' =		.0154 (MN)	/ (VM STI	D)			0.00190	GRAINS/SCF
CS' @ 7 & O2 = 0	CS'	* (20.9-7) 701 + (10 (/ (20.9 -	- 02)			U.UU196	GRAINS/SCF
CS'EIZSCUZ=	(, LC V , LC V	₹ UUZ) Os				1 02	UBS/HR
E =	CS x FUE	L FACTOR X	(20.9/(20	.9-%02))			0.0047	LBS/MMBTU

CONDENSIBLE PARTICULATE EMISSION CALCULATION SHEET

FACILITY: UNIT : DATE :	Pinetree Fite Wood Fired Be 6/27/2013	chburg Diler					RUN ID# : START TIME: END TIME:	3 10:50 12:52
Ds (FT) As (SQFT) Y = PIT COEFF Dn (IN) An (SQFT) IMP-1 (INT) IMP-2 (INT) IMP-3 (INT) IMP-4 (INT) IMP-4 (INT) IMP-1 (FIN) IMP-2 (FIN) IMP-3 (FIN)	6.25 30.68 1.017 0.77 0.166 0.00015 0 0 100 550 177 2 108	TRAV PT B1 2 3 4 5 6 A1 2 3 4 5	DELTA P 0.90 1.00 1.15 1.15 1.00 0.95 0.95 1.05 1.15 1.15 1.15	SQ ROOT 0.95 1.00 1.07 1.07 1.00 0.97 0.97 1.02 1.07 1.07 1.07	DELTA H 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	DGM IN 112 112 111 112 112 113 113 113 114 114 114 115 117	DGM OUT 112 112 111 112 112 112 113 113 113 114 114 114 115 117	STACK TEMP 360 358 358 358 358 358 355 357 358 356 355
IMP-4 (FIN) % CO2 (OUT) % O2 (OUT) % CO (OUT) % N2 (OUT) F-FACTOR P BAR PSTK	561.9 12.25 7.91 0.00 79.84 11022 29.60 -0.65	6	0.95	0.97	0.35	11/	117	354
FINAL METER INT METER MID LEAK CK VM (CF) RUN TIME	687.650 648.000 0.000 39.650 119.500	AVG: TS ('R)= TM ('F)= TM ('R)=	1.03	1.02 817.3 113.5 573.5	0.35 DELTA PS (A VI (T	113.50 H (ABS) BS) OT)	113.50 = = =	357.25 29.63 29.55 198.9
SAMPLE CATCH	ORGANIC		INORGANI	С			BLANK	
(mg)	1.0	mg	4.3	mg			1.0	mg
MN = Total VM STD = VW STD =	Condensible Pa 17.64 (VM	rticulate) (Y) (DEL	(Blank (TA H ABS	Corrected)) / (TM)			4.30 36.75 9.36	mg DSCF CF
BWO = Md (DRY) = Ms (WET) =	(VW STD)/(VW .44(%CO2)+ Md(1-BWO)+	STD)+(VM .32(%02)+. 18(BWO)	STD) 28(%CO)+	.28(%N2)			0.203 30.28 27.78	LBS/MOLE LBS/MOLE
G = VS = H = J = K =	85.49(CP)(G) 0.002669 (DELT (H) +	(SQRT DELT (VI TOT) A H ABS) ((J)	AP) VM) (Y)	/ (TM)			66.70 0.53 2.08 2.61	FPS
% ISO _=	((TS)(K)(1	.667))/ ((TIME) (VS)(PS)(AN))		-	100.6	0,0
Qs = CS = CS' = CS'@7%02 = CS'@12%C02= PMR = E =	3600(1-BWO)(VS)(AS)(17.64)(PS)/(TS) (2.205x10-6)(MN)/(VM STD) .0154(MN)/(VM STD) CS'*(20.9-7)/(20.9-02) CS'*(12/%CO2) CS X QS						3744749 2.58E-07 0.00180 0.00193 0.00177 0.97 0.0046	DSCFH LBS/SCF GRAINS/SCF GRAINS/SCF GRAINS/SCF LBS/HR LBS/MMBTU

Appendix G

Calibration Er	fror Test, R	un z str	KATA VEISIO	1 3.2	
Operator:	Rob	ert Arnol	Ld		
Plant Name:	Fit	chburg		. r	
Location:	Sta	ck			
Refe	erence Cylin	der Numbe	ers		
Zero	- -	Low-range	∋ Mid-ı	cange	High-range
02		-		-	_
CO2					
CO					
NOx					
S02					
Date/Time	06-26-2013		07:24:58		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	olo	cło	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Avg	0.083	0.003	-0.27	0.07	-0.28
Zero Error%	0.4%	0.0%	0.0%	0.0%	0.2%
Low Ref Cyl					
Low Avg					
Low Error%					
Mid Ref Cyl	11.450	9.910	476.00	94.40	50.90
Mid Avg	11.352	9.899	471.25	94.14	50.70
Mid Error%	0.4%	0.1%	0.5%	0.1%	0.2%
High Ref Cyl	22.800	19.850	947.00	192.30	122.00
High Avg	22.588	19.804	941.37	191.87	120.58
High Error%	0.9%	0.2%	0.6%	0.2%	1.2%
Calibration E	rror Test En	d			

To Wheeler MassDEP 6/26/13

Initial System Bias Check, Run 2 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span 02 CO2 CO2 NOX SO2

Date/Time	06-26-2013		07:34:34		PASSED		
Analyte	02	CO2	CO	NOx	SO2		
Units	ofo	Ŷ	ppm	ppm	ppm		
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00		
Zero Cal	0.083	0.003	-0.27	0.07	-0.28		
Zero Avg	0.076	0.019	2.75	1.13	0.64		
Zero Bias%	0.0%	0.1%	0.3%	0.5%	0.8%		
Zero Drift%							
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90		
Span Cal	11.352	9.899	471.25	191.87	50.70		
Span Avg	11.230	9.903	470.21	190.88	50.51		
Span Bias%	0.5%	0.0%	0.1%	0.5%	0.2%		
Span Drift%							
System Bias Check End							

T. Wheeler MassDEP 4/24/13

SALA 1

Final Syst Operator: Plant Name Location:	em Bias C	heck, Run Robert Fitchb Stack	2 STRATA Arnold urg	Version	3.2	
	Reference	Cyrruder Cyrruder	numbers			
02 C02 C0 NOx S02	2610	Spar	11			
Date/Time	06-2	6-2013	08:	51:04		PASSED
Analvte	00 1	02	CO2	CO	NOx	SO
Units		olo -	8	mqq	ppm	Iqq
Zero Ref (Cyl 0.	000 0	.000	0.00	0.00	0.0
Zero Cal	- 0.	083 0	.003 ~	0.27	0.07	-0.2
Zero Avg	0.	114 0	.035 -	0.24	0.27	-0.0
Zero Bias	δ Ο	.1%	0.2%	0.0%	0.1%	0.2
Zero Drift	:% 0	.2%	0.1% -	0.3%	-0.4%	~0.5

9.910

9.899

9.937

0.2%

0.2%

0.019

9.903 12.745

0.027

9.920 12.740

476.00

471.25

469.22

0.2%

-0.1%

2.75

470.21

166.31

469.72 167.71

1.25

192.30

191.87

190.87

0.5%

0.0%

1.13

190.88

29.67

0.70

190.88

29.30

11.450

11.352

11.294 0.3%

0.3%

0.076

7.288

0.095

7.375

11.262

11.230

Span Cal

Span Avg

Run Avg

Со

Cm

Span Bias%

Span Drift%

Ini Zero Avg

Ini Span Avg

Correct Avg

System Bias Check End

Span Ref Cyl

WS-14

S02 ppm 0.00 -0.28 -0.01 0.2%

~0.5% 50.90

50.70

50.79

0.1%

0.2%

0.64

0.06

0.31

50.65

-0.26

50.51

T. Wheels Mass DEP 4/24/13

FARTA Z

Final System Bias Check, Run 3 STRATA Version 3.2 Operator: Robert Arnold Operator: Plant Name: Location: Fitchburg Stack Reference Cylinder Numbers Zero Span 02

Date/Time	06-26-2013		09:19:41		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	Po	çı	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.123	0.048	0.17	0.28	0.32
Zero Bias%	0.2%	0.2%	0.0%	0.1%	0.5%
Zero Drift%	0.0%	0.1%	0.0%	0.0%	0.3%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.296	9.941	470.11	191.68	50.21
Span Bias%	0.2%	0.2%	0.1%	0.1%	0.4%
Span Drift%	0.0%	0.0%	0.1%	0.4%	-0.5%
Ini Zero Avg	0.114	0.035	-0.24	0.27	-0.01
Ini Span Avq	11.294	9.937	469.22	190.87	50.79
Run Avq	7.350	12.733	139.11	36.54	1.41
Co	0.119	0.041	-0.03	0.28	0.15
Cm	11.295	9.939	469.67	191.28	50.50
Correct Avg	7.408	12.708	141.01	36.51	1.27

System Bias Check End

C02 CO NOx S02

T. Wheeler MassDEP 4/0%/13

SALA 3

MSRIC

Final Syst	em Bias	Check,	Run	4	STRATA	Version	3.2
Operator		Rol	bert	Arr	nold		
Plant Name	9:	Fi	tchbu	ırg			
Location:		St	ack				
	Referenc	e Cyli	nder	Nun	nbers		
	Zero		Spar	ı			
02							

CO2	
CO	
NOx	
S02	

Date/Time	06-26-2013		09:50:46		PASSED
Analyte	02	C02	CO	NOx	S02
Units	ç,	망	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avq	0.131	0.060	-2.40	0.06	-0.17
Zero Bias%	0.2%	0.3%	0.2%	0.0%	0.1%
Zero Drift%	0.0%	0.1%	-0.3%	-0.1%	-0.4%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.376	10.005	470.11	191.41	50.52
Span Bias%	0.1%	0.5%	0.1%	0.2%	0.1%
Span Drift%	0.3%	0.3%	0.0%	-0.1%	0.3%
Ini Zero Aug	0 123	0 048	0 17	0.28	0 32
Ini Zeito Avg	11 296	9 9/1	470 11	191 68	50 21
Ini Span Avg	7 004	12 021	200.27	20 51	-0.56
Run Avg	7.004	13.021	209.37	29.JI	-0.00
Co	0.127	0.054	-1.11	0.17	0.07
Cm	11.336	9.973	470.11	191.54	50.36
Correct Avg	7.025	12.955	212.62	29.48	-0.64
System Bias	Check End				

T. Wheeler MASSDEP 6/20/13

M5-2 A

Final System F Operator: Plant Name: Location: Refe Zero 02 CO2 CO2 CO2 CO2 CO2 SO2 SO2	Bias Check, H Robe Fite Stac erence Cyline o	Run 5 S ^r ert Arnol chburg ck der Numbe Span	TRATA Versic ld ers	on 3.2	
502					
Date/Time	06-26-2013		10:20:25		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	90	음	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.131	0.053	-0.27	0.05	-0.17
Zero Bias%	0.2%	0.3%	0.0%	0.0%	0.1%
Zero Drift%	0.0%	0.0%	0.2%	0.0%	0.0%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.336	10.020	470.82	193.08	49.97
Span Bias%	0.1%	0.6%	0.0%	0.6%	0.68
Span Drift%	-0.2%	0.1%	0.1%	0.9%	-0.4%
Ini Zero Ava	0.131	0.060	-2.40	0.06	-0.17
Ini Span Avg	11.376	10.005	470.11	191.41	50.52
Run Ava	6.462	13.669	466.23	28.15	-0.29
Co	0.131	0.057	-1.33	0.06	-0.17
Cm	11.356	10.013	470.46	192.24	50.24
Correct Ava	6.458	13.550	471.73	28.11	-0.12

Correct Avg 6.458 System Bias Check End

~

T. Wheeler M&5506P Lef24/13

KAY 141)

S.	5	<i>N</i> ²	n.	B
----	---	-----------------------	----	---

Final System Bias Check, Run 6 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span O2 CO2

CO NOx

S02					
Date/Time	06-26-2013		10:47:45		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	율	90	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.138	0.054	-0.29	0.06	-0.60
Zero Bias%	0.2%	0.3%	0.0%	0.0%	0.3%
Zero Drift%	0.0%	0.0%	0.0%	0.0%	-0.4%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.334	10.033	469.58	192,66	49.62
Span Bias%	0.1%	0.7%	0.2%	0.4%	0.9%
Span Drift%	0.0%	0.1%	-0.1%	-0.2%	-0.3%
Ini Zero Avq	0.131	0.053	-0.27	0.05	-0.17
Ini Span Avg	11.336	10.020	470.82	193.08	49.97
Run Avq	6.617	13.504	336.57	34.48	-0.46
Co	0.135	0.054	-0.28	0.06	-0.38
Cm	11.335	10.027	470.20	192.87	49.79
Correct Avg	6.627	13.365	340.80	34.33	-0.08

System Bias Check End

T. Wheeler mess DEP 4/24/13

RATH B

MS-26

49.58

0.64

192.13 39.07

469.39 416.17

Final System B Operator: Plant Name: Location: Refe Zerc 02 CO2	ias Check, F Robe Fito Stac grence Cylino S	Run 7 ST ert Arnol chburg ck der Numbe Span	RATA Versio .d ers	n 3.2	
CO					
NOx					
SO2					
					-
Date/Time	06-26-2013		11:17:19		PASSED
Analyte	02	C02	CO	NOX	S02
Units	olo	8	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.155	0.056	~1.35	0.07	-0.51
Zero Bias%	0.3%	0.3%	0.1%	0.0%	0.2%
Zero Drift%	0.1%	0.0%	-0.1%	0.0%	0.1%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.343	10.022	469.21	191.60	49.54
Span Bias%	0.0%	0.6%	0.2%	0.1%	1.0%
Span Drift%	0.0%	-0.1%	0.0%	-0.6%	-0.1%
Ini Zero Ava	0.138	0.054	-0.29	0.06	-0.60
Ini Span Avg	11.334	10.033	469.58	192.66	49.62
Run Ava	6.794	13.356	410.29	39.08	0.07
Co	0.147	0.055	-0,82	0.06	-0.55
~ ~					

10.028 13.217

11.338 Cm 6.801 Correct Avg

System Bias Check End

T. wheelv Massber 6/24/13

Final	System	Bias	Check,	Run	8	STRATA	Version	3.2
Operat	tor:		Ro	bert	Arr	lold		
Plant	Name:		Fi	tchbu	ırg			
Locat:	íon:		St	ack				
	Re	ferend	ce Cyli	nder	Nur	nbers		
	Ze:	ro		Spar	n			
02								
CO2								
CO								
NOx								
SO2								

RATA 7 N/6 5D 02/02/00/05

M5-3A 53

Date/Time	06-26-2013		11:46:13		PASSED
Analyte	02	C02	CO	NOx	SO2
Units	용	Ş	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.139	0.054	0.68	0.29	-0.84
Zero Bias%	0.2%	0.3%	0.1%	0.1%	0.5%
Zero Drift%	-0.1%	0.0%	0.2%	0.1%	-0.3%
Span Ref Cvl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.336	10.044	469.19	191.92	49.44
Span Bias%	0.1%	0.7%	0.2%	0.0%	1.0%
Span Drift%	0.0%	0.1%	0.0%	0.2%	-0.1%
-Ferri					
Ini Zero Ava	0.155	0.056	-1.35	0.07	-0.51
Ini Span Avg	11.343	10.022	469.21	191.60	49.54
Run Ava	5.681	14.828	715.99	99.73	-0.72
Co	0.147	0.055	-0.33	0.18	-0.67
Cm	11.339	10.033	469.20	191.76	49.49
Correct Ava	5.661	14.672	726.19	99.93	-0.05
System Bias Ch	neck End				

T. Wheeler Mass DEP 4/24/13

Final System B Operator: Plant Name: Location: Refe Zerc 02 C02 C02 C0 NOx S02	ias Check, R Robe Fitc Stac crence Cylind	un 9 ST rt Arnol hburg k er Numbe pan	TRATA Version Ld ers	3.2	
Date/Time	06-26-2013		12:14:21		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	90	윰	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.148	0.067	-2.26	0.06	-1.13
Zero Bias%	0.3%	0.3%	0.2%	0.0%	0.7%
			0 00	0 10	0 00

RATTA O MIG SU Oz/COL OLIS MS-38 SD

ł

-0.2% -0.3% -0.1% Zero Drift% 0.0% 0.1% 50.90 9.910 476.00 192.30 Span Ref Cyl 11.450 Span Cal 50.70 11.352 9.899 471.25 191.87 11.396 470.07 10.086 192.68 49.95 Span Avg 0.4% 0.6% 0.9% 0.2% Span Bias% 0.4% 0.1% 0.4% Span Drift% 0.3% 0.2% 0.139 0.054 0.68 0.29 -0.84 Iní Zero Avg 191.92 49.44 10.044 469.19 Ini Span Avg 11.336 -0.92 14.737 963.92 73.27 Run Avg 5.743 0.144 0.060 -0.79 0.18 -0.98 Со 10.065 469.63 192.30 73.16 49.70 11.366 Cm 0.06 976.16 14.537 Correct Avg 5.713

5B

M5-3 C

Final System B	ias Check,	Run 10	STRATA	Version	3.2
Operator:	Ro	bert Arn	old		
Plant Name:	Fi	tchburg			
Location:	St	ack			
Refe	rence Cyli	nder Num	bers		
Zero		Span			
02					
CO2					

CO NOx SO2

Date/Time	06-26-2013		12:49:10		PASSED
Analyte	02	CO2	CO	NOx	S02
Units	ch C	cho Cho	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.171	0.189	-2.40	0.07	-1.03
Zero Bias%	0.4%	0.9%	0.2%	0.0%	0.6%
Zero Drift%	0.1%	0.6%	0.0%	0.0%	0.1%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.416	10.040	466.19	188.90	49.67
Span Bias%	0.3%	0.7%	0.5%	1.5%	0.8%
Span Drift%	0.1%	-0.2%	-0.4%	-2.0%	-0.2%
Ini Zero Avg	0.148	0.067	-2.26	0.06	-1.13
Ini Span Avg	11.396	10.086	470.07	192.68	49.95
Run Avg	7.097	13.044	673.30	30.78	-1.00
Co	0.160	0.128	-2.33	0.06	-1.08
Cm	11.406	10.063	468.13	190.79	49.81
Correct Avg	7.063	12.884	683.58	30.97	0.08

8 Aras

Final Syst Operator: Plant Name Location:	cem Bias e:	Check, Rol Fit Sta	Run bert tchbu ack	11 Arnc irg	STRATA old	Version	3.2
	Referenc	re Cvlii	nder	Numh	pers		
	Zero	C OYII	Spar	1	010		
O2 CO2 CO NOX SO2			-1-				
Date/Time Analyte	06-	-26-201 02	3	C02	13:2	4:26 CO	NOx

Date/Time	06-26-2013		13:24:26		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	00	do	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.131	0.067	-2.33	0.07	-1.38
Zero Bias%	0.2%	0.3%	0.2%	0.0%	0.9%
Zero Drift%	-0.2%	-0.6%	0.0%	0.0%	-0.3%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.336	10.064	468.25	194.30	48.49
Span Bias%	0.1%	0.8%	0.3%	1.3%	1.8%
Span Drift%	-0.4%	0.1%	0.2%	2.8%	-1.0%
Ini Zero Ava	0.171	0.189	-2.40	0.07	-1.03
Ini Span Avg	11.416	10.040	466.19	188.90	49.67
Run Ava	7.594	12.661	257.76	29.41	-1.34
Co	0.151	0.128	-2.36	0.07	-1.21
Cm	11.376	10.052	467.22	191.60	49.08
Correct Avg	7.592	12.516	263.68	29.46	-0.14

02 CO2 CO NOx

S02

Date/Time	06-26-2013		13:52:21		PASSED
Analyte	02	CO2	CO	NOX	SO2
Units	olo	8	ppm	ppm	ppm
Zero Ref Cvl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.115	0.054	-1.32	0.07	-1.55
Zero Bias%	0.1%	0.3%	0.1%	0.0%	1.0%
Zero Drift%	-0.1%	-0.1%	0.1%	0.0%	-0.1%
Span Ref Cvl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.320	10.083	469.37	194.05	49.88
Span Bias%	0.1%	0.9%	0.2%	1.1%	0.7%
Span Drift%	-0.1%	0.1%	0.1%	-0.1%	1.1%
Ini Zero Avg	0.131	0.067	-2.33	0.07	-1.38
Ini Span Avg	11.336	10.064	468.25	194.30	48.49
Run Ava	7.086	13.025	293.33	37.93	-1.36
Co	0.123	0.060	-1.82	0.07	-1.47
Cm	11.328	10.073	468.81	194.17	49.18
Correct Ava	7.115	12.831	298.52	37.51	0.10

Final System Bias Check, Run 13 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span 02

CO2 CO

NOX SO2

Date/Time	06-26-2013		14:20:03		PASSED
Analyte	02	CO2	CO	NOX	SO2
Units	8	S ^I	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.123	0.073	-0.46	0.30	-1.35
Zero Bias%	0.2%	0.4%	0.0%	0.1%	0.9%
Zero Drift%	0.0%	0.1%	0.1%	0.1%	0.2%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.312	10.062	468.08	193.47	48.40
Span Bias%	0.2%	0.8%	0.3%	0.8%	1.9%
Span Drift%	0.0%	-0.1%	-0.1%	-0.3%	-1.2%
Ini Zero Avg	0.115	0.054	-1.32	0.07	-1.55
Ini Span Avg	11.320	10.083	469.37	194.05	49.88
Run Avg	7.161	12.944	249.64	41.43	-1.38
Co	0.119	0.064	-0.89	0.18	-1.45
Cm	11.316	10.072	468.72	193.76	49.14
Correct Avg	7.201	12.754	253.94	40.98	0.07
System Bias Ch	eck End				

10

ZO1 A/202 - 1 T3

Final System Bias Check, Run 14 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span O2 CO2 11

M

2018/202 1-6

06-26-2013 14:49:14 PASSED Date/Time 02 Analyte C02 СО NOx S02 Units 8 8 ppmppmppmZero Ref Cyl 0.000 0.000 0.00 0.00 0.00 0.083 0.003 -0.27 0.07 -0.28 Zero Cal 0.095 -1.29 0.07 -1.46 Zero Avg 0.115 Zero Bias% 0.5% 0.0% 1.0% 0.18 0.1% Zero Drift% 0.0% 0.1% -0.1% -0.1% -0.1% Span Ref Cyl 11.450 9.910 476.00 192.30 50,90 9.899 471.25 191.87 50.70 Span Cal 11.352 11.320 10.083 466.06 192.13 48.72 Span Avg 0.9% Span Bias% 0.1% 0.5% 0.1% 1.6% Span Drift% 0.0% 0.1% -0.2% -0.7% 0.3% -0.46 0.30 0.123 0.073 -1.35 Ini Zero Avg Ini Span Avg 11.312 10.062 468.08 193.47 48.40 Run Avg 6.733 13.435 569.62 36.18 -1.43 -0.87 -1.40Со 0.119 0.084 0.18 10.073 Cm 11.316 192.80 48.56 580.32 -0.03 Correct Avg 6.763 13.246 35.93

System Bias Check End

CO NOx SO2

Final System B Operator: Plant Name: Location: Refe Zero 02 CO2 CO2 CO NOx SO2	ias Check, H Robe Fite Stac rence Cyline S	Run 15 ert Arno chburg ck ier Numb Span	STRATA Versi ld ers	on 3.2	
Data /mimo	06-26-2012		15.51.11		סאפפדה
Date/IIme Apalyto	00-20-2013	CO2	T2.21.11	NOv	502 s
Inite	\$ \$	202 8	ກກໜ	man	maa
Zero Bef Cvl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.115	0.092	-0.82	0.07	-1.50
Zero Bias%	0.1%	0.4%	0.1%	0.0%	1.0%
Zero Drift%	0.0%	0.0%	0.0%	0.0%	0.0%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.331	10.051	468.26	191.09	48.48
Span Bias%	0.1%	0.8%	0.3%	0.4%	1.8%
Span Drift%	-0.3%	0.98	0.2%	-0.5%	-0.2%
Ini Zero Avg	0.107	0.099	-1.29	0.07	-1.46
Ini Span Avg	11.399	9.863	466.06	192.13	48.72
Run Avg	7.272	12.878	342.32	27.89	-1.50
Со	0.111	0.095	-1.05	0.07	-1.48
Cm	11.365	9.957	467.16	191.61	48.60
Correct Avg	7.286	12.846	349.08	27.92	-0.02

12

Amilyon / Syster

Calibration Er Operator: Plant Name: Location: Refe Zero O2 CO2 THC	ror Test, H Rot Fit Sta rence Cylin	Run 2 STR bert Arnol tchburg ack nder Numbe Low-range	ATA Version 3.2 d rs Mid-range
Date/Time Analyte Units Zero Ref Cyl Zero Avg Zero Error% Low Ref Cyl Low Avg Low Error% Mid Ref Cyl Mid Avg Mid Error% High Ref Cyl High Avg High Error% Calibration Er	06-27-201 02 % 0.000 0.036 0.2% 11.450 11.344 0.5% 22.800 22.586 0.9% ror Test En	CO2 % 0.000 0.139 0.7% 9.910 9.933 0.1% 19.850 19.686 0.8% nd	08:06:37 THC ppm 0.00 0.29 0.3% 29.60 29.66 0.1% 55.20 55.20 55.20 0.0% 91.30 91.66 0.4%

High-range

It system

Initial System Bias Check, Run 2 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span 02 CO2 THC Date/Time 06-27-2013 08:14:17 Analyte O2 CO2 THC

Date/Time	06-27-2013		08:14:17
Analyte	02	CO2	THC
Units	olo	cho Cho	ppm
Zero Ref Cyl	0.000	0.000	0.00
Zero Cal	0.036	0.139	0.29
Zero Avg	0.108	0.225	0.11
Zero Bias%	0.3%	0.4%	0.2%
Zero Drift%			
Span Ref Cyl	11,450	9.910	55.20
Span Cal	11.344	9.933	55.20
Span Avg	11.312	9.838	55.54
Span Bias%	0.1%	0.5%	0.3%
Span Drift%			
System Bias Ch	eck End		

Final System Bi Operator: Plant Name: Location: Refer Zero O2 CO2 THC	as Check, Rob Fit Sta ence Cylin	Run 2 ST ert Arnol- chburg ck der Numbe Span	RATA Version d rs	3.2
Date/Time	06-27-2013		09:25:12	
Analyte	00 27 2013	C02	THC	
Units	2	4	mqq	
Zero Ref Cyl	0.000	0.000	0.00	
Zero Cal	0.036	0.139	0.29	
Zero Avg	0.107	0.250	0.22	
Zero Bias%	0.3%	0.6%	0.1%	
Zero Drift%	0.0%	0.1%	0.1%	
Span Ref Cyl	11.450	9.910	55.20	
Span Cal	11.344	9.933	55,20	
Span Avg	11.291	9.899	55.00	
Span Bias%	0.2%	0.2%	0.2%	
Span Drift%	-0.1%	0.3%	-0.5%	
Ini Zero Ava	0.108	0.225	0.11	
Ini Span Avq	11.312	9.838	55.54	
Run Avq	6.998	12.868	10.84	
Co	0.108	0.237	0.17	
Cm	11.302	9.868	55.27	
Correct Avg	7.048	12.997	10.69	
System Bias Che	ck End			

A 5-01 AS

1-202

Final System B Operator: Plant Name:	ias Check, F Robe Fito	Nun 3 S ert Arno Shburg	TRATA Version ld	3.2
Location:	Stac	:k		
Refe	rence Cylind	ler Numb	ers	
Zerc	, ⁻ S	Span		
02		-		C
CO2				
THC				
Date/Time	06-27-2013		10:31:40	1
Analvte	02	C02	THC	
Units	06	019	mqq	
Zero Ref Cyl	0.000	0.000	0.00	
Zero Cal	0.036	0.139	0.29	
Zero Avg	0.135	0.269	-0.56	
Zero Bias%	0.4%	0.7%	0.8%	
Zero Drift%	0.1%	0.1%	-0.8%	
Span Ref Cyl	11.450	9.910	55.20	
Span Cal	11.344	9.933	55.20	
Span Avg	11.320	9.938	55.37	
Span Bias%	0.1%	0.0%	0.2%	
Span Drift%	0.1%	0.2%	0.4%	
Ini Zero Avg	0.107	0.250	0.22	
Ini Span Avg	11.291	9.899	55.00	
Run Avg	7.845	12.189	3.04	
Со	0.121	0.259	-0.17	
Cm	11.306	9.918	55.18	
Correct Avg	7.907	12.240	3.19	
System Bias Ch	leck End			

23

EJ01 - EJPO

10C-3 14410 24

Final System Bias Check, Run 4 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span O2 CO2 THC

38

Date/Time	06-27-2013		10:52:27
Analvte	02	C02	THC
Units	<u>9</u>	¢ło	ppm
Zero Ref Cyl	0.000	0.000	0.00
Zero Cal	0.083	0.003	0.29
Zero Avq	0.131	0.263	0.87
Zero Bias%	0.2%	1.3%	0.6%
Zero Drift%	0.0%	0.0%	1.4%
Span Ref Cyl	11.450	9.910	55.20
Span Cal	11.352	9.899	55.20
Span Avg	11.322	9.933	55.31
Span Bias%	0.1%	0.2%	0.1%
Span Drift%	0.0%	0.0%	-0.1%
Ini Zero Ava	0 135	0.269	-0.56
Ini Span Avg	11 320	9,938	55.37
Run Ava	7 921	12,164	4.63
Co	0.133	0.266	0.16
Cm	11.321	9.936	55.34
Correct Ava	7.970	12.194	4.47
System Bias Ch	eck End		

CONFIDENTIAL BUSINESS INFORMATION

EFFLUENT GAS CALIBRATION CORRECTION

DHIO38

FACII UNIT: DATE:	JITY:	Pinetree Fitchbur Stack 6-26-13	.d			RUN ID#: START: END:	Comp 3 5 10:55 11:55
			02	C02	RESP		
		RANGE	20.80	19.85			
Cma	-	ACTUAL CAL GAS	11.45	9.91			
		ACAL ZERO	0.04	0.14	0.7%	ACAL BIAS	
		INIT ZERO	0.14	0.27	0.7%	BIAS	
		FINAL ZERO	0.15	0.31	0.9%	BIAS	
Со	and a	AVG ZERO	0.14	0.29	0.2%	DRIFT	
		ACAL RESP	11.34	9.93	0.1%	ACAL BIAS	
		INIT UPSCALE	11.32	9.94	0.0%	BIAS	
		FINAL UPSCALE	11.33	9.92	-0.1%	BIAS	
Cm	==	AVG UPSCALE	11.33	9.93	-0.1%	DRIFT	
Craw		RAW RM DATA	7.80	12.26			
Cgas		ADJ RM DATA	7.84	12.31			

Appendix H
RATTA 1

Test Run 2 S	TRATA Ver	rsion 3.2				
		02	CO2	CO	NOx	SO2
		olo	ejo	ppm	ppm	ppm
Begin calcula	ting run	averages				
06-26-2013 08	3:26:05	7.030	12.913	199.61	26.16	0.07
06-26-2013 08	1:27:04	7.015	12.907	193.87	26.24	-0.02
06-26-2013 08	3:28:04	7.148	12.830	168.39	27.22	-0.13
06-26-2013 08	3:29:04	7.074	12.879	154.78	28.21	0.09
06-26-2013 08	3:30:04	7.299	12.737	141.44	27.25	-0.02
06-26-2013 08	3:31:04	7.153	12.826	148.01	27.35	0.04
06-26-2013 08	3:32:04	7.162	12.819	221.05	26.41	-0.02
06-26-2013 08	3:33:04	6.993	12.941	227.32	26.96	-0.04
06-26-2013 08	3:34:04	7.008	12.914	182.70	28.09	0.09
06-26-2013 08	3:35:04	7.213	12.810	184.81	28.64	0.03
06-26-2013 08	3:36:05	7.469	12.633	142.65	29.43	0.12
06-26-2013 08	3:37:05	7.521	12.625	148.77	29.75	0.17
06-26-2013 08	3:38:05	7.719	12.420	142.84	29.00	-0.02
06-26-2013 08	3:39:05	7.347	12.705	120.80	29.98	0.15
06-26-2013 08	3:40:05	7.411	12,668	123.25	30.61	0.15
06-26-2013 08	3.41.05	7.420	12.663	126.22	31.75	0.06
06-26-2013 08	3.42:05	7.111	12.844	155.15	32.76	0.14
06-26-2013 08	3:43:05	7.216	12.824	261.51	33.08	0.09
06-26-2013 08	8.44.05	7.475	12,645	177.05	34.45	0.11
06-26-2013 08	3:45:05	7.487	12.617	144.58	35.14	0.03
06-26-2013 08	R•46•05	7.769	12,431	127.63	34.66	0.11
Rup Averages		02	CO2	CO	NOx	SO2
Null Averages		8	20	maa	maa	mqq
06-26-2013 08	8.46.05	7 288	12.745	166.31	29.67	0.06
Operator:	5.10.00	Robert Arno	old a			
Dlant Name+		Fitchburg				
Location:		Stack				
LOCALION:		SLACK				

Location: Test Run 2 End

T. Wheeled Mass DEP 6/24/13

24745

Test Run 3 STRATA Ve	ersion 3.2					
	02	CO2	CO	NOx	S02	
	95	0/0	ppm	ppm	ppm	
Begin calculating run	n averages					
06-26-2013 08:54:01	7.629	12,525	159.74	34.63	4.33	
06-26-2013 08:55:01	7.561	12.560	140.82	34.68	3.76	
06-26-2013 08:56:01	7.664	12.499	127.00	34.49	3.12	
06-26-2013 08:57:01	7.745	12.451	115.11	33.59	2.54	
06-26-2013 08:58:01	7.654	12.482	111.78	33.52	2.05	
06-26-2013 08:59:01	7.316	12.752	136.49	35.40	1.71	
06-26-2013 09:00:01	7.454	12.677	179.73	34.42	1.53	
06-26-2013 09:01:02	7.247	12.801	134.00	36.33	1.32	
06-26-2013 09:02:02	7.146	12.873	127.23	36.90	1.25	
06-26-2013 09:03:02	7.407	12.717	115.74	35.71	1.05	
06-26-2013 09:04:02	7.253	12.785	117.84	35.09	0.95	
06-26-2013 09:05:02	7.007	12.973	217.29	36.19	0.88	
06-26-2013 09:06:02	7.103	12.907	174.14	37.84	0.84	
06-26-2013 09:07:02	7.143	12.888	150.17	37.91	0.72	
06-26-2013 09:08:02	7.327	12.768	125.93	37.84	0.67	
06-26-2013 09:09:02	7.178	12.856	118.29	38.11	0.66	
06-26-2013 09:10:02	7.162	12.867	114.07	39.67	0.42	
06-26-2013 09:11:02	7.458	12.661	160.39	37.19	0.59	
06-26-2013 09:12:02	7.192	12.848	134.35	38.65	0.39	
06-26-2013 09:13:02	7.294	12.790	133.15	39.83	0.37	
06-26-2013 09:14:02	7.400	12.715	128.04	39.38	0.36	
Run Averages	02	C02	CO	NOx	SO2	
	çi	ę	ppm	ppm	ppm	
06-26-2013 09:14:02	7.350	12.733	139.11	36.54	1.41	
Operator:	Robert Arno	old				
Plant Name:	Fitchburg					
Location:	Stack					
Test Run 3 End						

T. Wheeler Mass DEP 6/2/13

CATAS

Test Run 4 STRATA Ve	ersion 3.2				
	02	CO2	CO	NOx	SO2
	00	clo Clo	ppm	ppm	ppm
Begin calculating run	n averages				
06-26-2013 09:25:02	7.349	12.764	161.16	35.07	-0.32
06-26-2013 09:26:02	7.533	12.633	153.39	33.20	-0.80
06-26-2013 09:27:02	7.582	12.595	147.29	30.85	-1.24
06-26-2013 09:28:02	7.576	12.586	144.07	28.84	-1.53
06-26-2013 09:29:02	7.546	12.606	113.30	28.92	-0.50
06-26-2013 09:30:02	7.195	12.828	130.97	29.67	-0.60
06-26-2013 09:31:02	6.726	13.211	223.07	30.63	-0.65
06-26-2013 09:32:02	6.837	13.097	213.05	30.90	-0.49
06-26-2013 09:33:02	7.148	12.900	219.04	27.77	-0.37
06-26-2013 09:34:02	7.002	12.972	185.79	27.95	-0.45
06-26-2013 09:35:02	6.850	13.081	182.54	28.11	-0.28
06-26-2013 09:36:02	6.766	13.170	180.71	28.38	-0.42
06-26-2013 09:37:03	6.765	13.186	210.48	27.83	-0.47
06-26-2013 09:38:03	6.737	13.265	317.10	28.52	-0.61
06-26-2013 09:39:03	6.742	13.233	308.57	28.86	-0.61
06-26-2013 09:40:03	6.661	13.364	270.26	29.26	-0.65
06-26-2013 09:41:03	6.584	13.447	284.02	30.47	-0.65
06-26-2013 09:42:03	6.609	13.408	298.39	30.36	-0.31
06-26-2013 09:43:03	6,856	13.129	227.12	30.19	-0.25
06-26-2013 09:44:03	7.092	12.937	235.49	26.86	-0.33
06-26-2013 09:45:03	6.920	13.029	191.03	27.08	-0.20
Run Averages	02	CO2	CO	NOx	S02
_	B	de la	ppm	ppm	ppm
06-26-2013 09:45:03	7.004	13.021	209.37	29.51	-0.56
Operator:	Robert Arno	old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 4 End					

T. Wheeler MassDEP 6/24/13

TRATA Ver	sion 3.2				
	02	CO2	CO	NOx	SO2
	Ŷ	cio 0	ppm	ppm	ppm
ing run	averages				
:53:14	6.537	13.511	425.46	27.18	-0.14
:54:14	6.818	13.189	269.23	27.37	-0.10
:55:14	6.909	13.066	263.95	25.58	-0.13
:56:14	6.330	13.787	425.18	27.27	~0.22
:57:14	6.279	13.895	564.01	27.77	-0.29
:58:14	6.379	13.792	534.25	27.82	-0.24
:59:14	6.771	13.281	265.36	27.90	~0.33
:00:14	7.047	12.980	234.82	26.18	-0.35
:01:14	6.585	13.427	360.28	26.03	-0.31
:02:14	6.132	14.094	789.79	27.08	-0.24
:03:14	6.132	14.093	831.56	27.96	-0.29
:04:14	6.199	14.050	576.77	29.20	-0.29
:05:14	6.530	13,621	340.56	29.49	-0.24
:06:14	6.722	13.298	288.70	27.54	-0.35
:07:14	6.388	13.768	343.78	28.84	-0.37
:08:14	6.451	13.702	320.98	29.04	-0.35
:09:14	6.614	13.480	262.59	28.78	-0.34
:10:14	6.549	13,542	249.94	28.75	-0.39
:11:14	6.137	14.083	690.66*	29.22	-0.33
:12:14	6.029	14.263	977.46*	30.26	-0.41
:13:14	6.156	14.126	775.50*	31.98	-0.40
	02	CO2	CO	NOx	SO2
	00	90	ppm	ppm	ppm
:13:15	6.462	13.669	466.23*	28.15	-0.29
I	Robert Arno	1d			
1	Fitchburg				
ç	Stack				
nd					
	RATA Ver Sing run 53:14 54:14 55:14 55:14 55:14 55:14 55:14 55:14 50:14 00:14 00:14 00:14 00:14 00:14 00:14 00:14 00:14 00:14 00:14 10:14 10:14 11:14 11:14 11:14 11:15 I I I I I I I I I I I I I	RATA Version 3.2 02 % 02 % 02 \$ing run averages 53:14 53:14 6.537 54:14 6.818 55:14 6.909 56:14 6.330 57:14 6.279 58:14 6.379 59:14 6.771 00:14 7.047 01:14 6.585 02:14 6.132 03:14 6.132 03:14 6.132 03:14 6.132 07:14 6.388 08:14 6.451 09:14 6.614 :10:14 6.137 :12:14 6.029 :13:14 6.156 02 % :13:15 6.462 Robert Arno Fitchburg Stack 64	RATA Version 3.2 O2 CO2 % % % sing run averages 53:14 6.537 13.511 54:14 6.818 13.189 55:14 6.909 13.066 56:14 6.330 13.787 57:14 6.279 13.895 58:14 6.379 13.792 59:14 6.771 13.281 00:14 7.047 12.980 01:14 6.585 13.427 02:14 6.132 14.094 03:14 6.132 14.093 04:14 6.199 14.050 05:14 6.722 13.298 07:14 6.388 13.768 08:14 6.451 13.702 09:14 6.614 13.480 10:14 6.549 13.542 11:14 6.156 14.126 02 C02 C02 13:14 6.156 14.126 02 C02 C02 </td <td>Q2 CO2 CO2 CO $\&$ $\&$ $\&$ $\&$ ppm sing run averages 53:14 6.537 13.511 425.46 $54:14$ 6.818 13.189 269.23 $55:14$ 6.300 13.787 425.18 $57:14$ 6.279 13.895 564.01 $58:14$ 6.379 13.792 534.25 $59:14$ 6.771 13.281 265.36 $c00:14$ 7.047 12.980 234.82 $c01:14$ 6.132 14.094 789.79 $c02:14$ 6.132 14.094 789.79 $c03:14$ 6.132 14.094 789.79 $c03:14$ 6.132 14.093 831.56 $c04:14$ 6.199 14.050 576.77 $c05:14$ 6.388 13.768 343.78 $c08:14$ 6.451 13.702 320.98 $c09:14$ 6.614 13.480 262.59 $c10:14$ 6.549 13.542 <td< td=""><td>RATA Version 3.202CO2CONOx$\\$ppmsing run averages53:146.53713.511425.4627.3755:146.90913.511425.4627.3755:146.90913.616269.2327.3755:146.30925.1827.3755:146.27955:146.27955:146.27953:146.37953:146.37953:146.37953:146.37953:146.132146.132146.132146.132146.13213:146.13213:146.1362.5928.7810:146.54913:146.136.46213:156.46213:69402colspan="2">13:146.13</td></td<></td>	Q2 CO2 CO2 CO $\&$ $\&$ $\&$ $\&$ ppm sing run averages 53:14 6.537 13.511 425.46 $54:14$ 6.818 13.189 269.23 $55:14$ 6.300 13.787 425.18 $57:14$ 6.279 13.895 564.01 $58:14$ 6.379 13.792 534.25 $59:14$ 6.771 13.281 265.36 $c00:14$ 7.047 12.980 234.82 $c01:14$ 6.132 14.094 789.79 $c02:14$ 6.132 14.094 789.79 $c03:14$ 6.132 14.094 789.79 $c03:14$ 6.132 14.093 831.56 $c04:14$ 6.199 14.050 576.77 $c05:14$ 6.388 13.768 343.78 $c08:14$ 6.451 13.702 320.98 $c09:14$ 6.614 13.480 262.59 $c10:14$ 6.549 13.542 <td< td=""><td>RATA Version 3.202CO2CONOx$\\$ppmsing run averages53:146.53713.511425.4627.3755:146.90913.511425.4627.3755:146.90913.616269.2327.3755:146.30925.1827.3755:146.27955:146.27955:146.27953:146.37953:146.37953:146.37953:146.37953:146.132146.132146.132146.132146.13213:146.13213:146.1362.5928.7810:146.54913:146.136.46213:156.46213:69402colspan="2">13:146.13</td></td<>	RATA Version 3.202CO2CONOx $\$$ ppmsing run averages53:146.53713.511425.4627.3755:146.90913.511425.4627.3755:146.90913.616269.2327.3755:146.30925.1827.3755:146.27955:146.27955:146.27953:146.37953:146.37953:146.37953:146.37953:146.132146.132146.132146.132146.13213:146.13213:146.1362.5928.7810:146.54913:146.136.46213:156.46213:69402colspan="2">13:146.13

T. Wheeler Mass DEP LIZUIS

PATA S

Test Run 6	STRATA V	ersion 3.2				
		02	CO2	CO	NOx	S02
		ojo	90	ppm	ppm	ppm
Begin calcu	lating ru	n averages				
06-26-2013	10:22:22	6.439	13.617	466.78	33.37	0.04
06-26-2013	10:23:22	6.569	13.550	374.36	33.46	-0.23
06-26-2013	10:24:22	7.017	13.025	191.77	33.11	-0.32
06-26-2013	10:25:23	7.001	13.004	163.31	32.57	-0.38
06-26-2013	10:26:23	6.641	13.383	235.52	32.55	-0.32
06-26-2013	10:27:23	6.562	13.533	302.04	32.63	-0.42
06-26-2013	10:28:23	6.762	13.281	335.13	31.60	-0.45
06-26-2013	10:29:23	6.597	13.517	246.92	33.17	-0.52
06-26-2013	10:30:23	6.618	13.491	260.80	34.03	-0.47
06-26-2013	10:31:23	6.326	13.852	445.83	35.03	-0.47
06-26-2013	10:32:23	6.249	14.015	644.09	35.71	-0.47
06-26-2013	10:33:23	6.719	13.427	419.11	34.40	-0.62
06-26-2013	10:34:23	6.704	13.376	295.18	34.29	-0.53
06-26-2013	10:35:23	6.632	13.472	283.36	34.35	-0,60
06-26-2013	10:36:23	6.320	13.908	498.37	35.34	-0.48
06-26-2013	10:37:23	6.434	13.803	407.29	36.63	-0.53
06-26-2013	10:38:23	6.579	13.600	312.77	37.08	-0.62
06-26-2013	10:39:23	6.865	13.241	349.75	34.76	-0.55
06-26-2013	10:40:23	6.765	13.313	254.20	35.85	-0.57
06-26-2013	10:41:23	6.563	13.599	292.34	36.83	-0.52
06-26-2013	10:42:23	6.592	13.571	289.02	37.38	-0.62
Run Average	ð 5	02	CO2	CO	NOx	SO2
-		8	clo	ppm	ppm	ppm
06-26-2013	10:42:23	6.617	13.504	336.57	34.48	-0.46
Operator:		Robert Arn	old			
Plant Name	:	Fitchburg				
Location:		Stack				

Test Run 6 End

T. Wheelow Messper 4/24/13

				- Pa	ATH	6
Test Run 7 STRATA V	Version 3.2					
	02	C02	СО	NOx	S02	
	ę	dio	mqq	mqq	maa	
Begin calculating ru	in averages			7 1		
06-26-2013 10:51:16	6.710	13.372	288.11	38.43	1.98	
06-26-2013 10:52:16	6.698	13.372	424.64	38.21	1.72	
06-26-2013 10:53:16	6.432	13.766	545.78	39.66	1.29	
06-26-2013 10:54:16	6.438	13.767	611.32	40.03	0.89	
06-26-2013 10:55:16	6.491	13.721	593.61	39.49	0.56	
06-26-2013 10:56:16	6.644	13.510	558.90	38.35	0.47	
06-26-2013 10:57:16	6.654	13.488	442.16	39.05	0.19	
06-26-2013 10:58:16	6.682	13.466	382.59	40.11	0.10	
06-26-2013 10:59:16	6.719	13.425	310.78	40.56	-0.06	
06-26-2013 11:00:16	6.776	13.323	420.35	38.87	-0.13	
06-26-2013 11:01:16	6.377	13.836	491.60	40.59	-0.26	
06-26-2013 11:02:16	6.370	13.901	561.54	42.20	-0.29	
06-26-2013 11:03:16	6.592	13.610	464.71	41.57	-0.42	
06-26-2013 11:04:16	6.984	13.098	372.35	39.51	-0.49	
06-26-2013 11:05:16	7.639	12,672	292.72	39.97	-0.54	
06-26-2013 11:06:16	7,747	12.477	316.26	31.99	-0.46	
06-26-2013 11:07:16	6.904	13.153	323.36	36.90	-0.56	
06-26-2013 11:08:16	7.003	13.054	299.86	37.20	-0.61	
06-26-2013 11:09:16	6.800	13.260	287.44	39.52	-0.63	
06-26-2013 11:10:16	6.840	13.252	303.18	40.56	-0.54	
06-26-2013 11:11:16	7.177	12.957	324.74	37.97	-0.69	
Run Averages	02	CO2	CO	NOx	S02	
	8	ofo	ppm	ppm	ppm	
06-26-2013 11:11:16	6.794	13.356	410.29	39.08	0.07	
Operator:	Robert Arn	old				
Plant Name:	Fitchburg					
Location:	Stack					
Test Run 7 End						

T. Wheeler Massher 6/26/13

						~
Test Run 8 STRATA Ve	ersion 3.2	_			200	
	02	C02	CO	NOx	S02	
	왕	olo	ppm	ppm	ppm	
Begin calculating run	n averages					
06-26-2013 11:20:05	7.435	12.738	318.82	33.93	-0.44	
06-26-2013 11:21:05	6.997	13.030	356.71	35.08	-0.49	
06-26-2013 11:22:05	6.596	13.532	383.46	45.15	-0.64	
06-26-2013 11:23:05	6.246	14.013	542.27	71.52	-0.64	
06-26-2013 11:24:04	5.754	14.741	612.73	84.49	-0.56	
06-26-2013 11:25:04	5.581	14.957	553.37	117.13	-0.67	
06-26-2013 11:26:04	5.495	15.131	633.28	118.57	-0.68	
06-26-2013 11:27:04	5.917	14.605	516.41	114.79	-0.74	
06-26-2013 11:28:04	5.859	14.636	428.21	116.97	-0.68	
06-26-2013 11:29:04	5.821	14.684	488.99	116.08	-0.70	
06-26-2013 11:30:04	5.803	14.685	604.48	114.71	-0.74	
06-26-2013 11:31:04	5.661	14.882	706.29	114.00	-0.76	
06-26-2013 11:32:04	5.377	15.193	924.47*	112.83	-0.73	
06-26-2013 11:33:04	5.095	15.544	1000.26*	114.19	-0.80	
06-26-2013 11:34:04	4.743	15.968	1000.25*	111.05	-0.72	
06-26-2013 11:35:05	5.100	15.611	1000.25*	113.02	-0.81	
06-26-2013 11:36:05	5.068	15.602	1000.25*	115.44	-0.91	
06-26-2013 11:37:05	5.136	15.582	1000.25*	114.46	-0.87	
06-26-2013 11:38:05	5.588	15.004	976.38*	113.88	-0.92	
06-26-2013 11:39:05	5,129	15.459	993.32*	110.68	-0.87	
06-26-2013 11:40:05	4.863	15.834	1000.21*	107.29	-0.87	
Run Averages	02	C02	CO	NOx	SO2	
-	90	90	ppm	ppm	ppm	
06-26-2013 11:40:05	5.681	14.828	715.99*	99.73	-0.72	
Operator:	Robert Arn	old	10			
Plant Name:	Fitchburg		~ ~ ~ ~ / (5		
Location:	Stack		e			

Test Run 8 End

T. Wheelm MGJ5DEP 6/24/13

RATTA 7 NOT SJ 0-/col only

RATA 9 10/6 53

Test Run 9 STRATA Ve	ersion 3.2				
	02	CO2	CO	NOx	SO2
	용	olo	ppm	ppm	ppm
Begin calculating run	n averages				
06-26-2013 11:49:14	4.966	15.689	1000.22*	111.26	-0.68
06-26-2013 11:50:14	5.094	15.577	1000.20*	112.80	-0.64
06-26-2013 11:51:14	5.079	15.622	1000.20*	114.34	-0.68
06-26-2013 11:52:14	4.876	15.848	1000.08*	115.59	-0.83
06-26-2013 11:53:14	4.983	15.742	1000.19*	115.06	-0.87
06-26-2013 11:54:14	5.363	15.351	957.22*	115.92	-0.96
06-26-2013 11:55:14	5.234	15.362	1000.18*	113.48	-0.87
06-26-2013 11:56:14	5.298	15.396	962.64*	113.78	-0.91
06-26-2013 11:57:14	5.617	14.975	752.64	109.16	-0.96
06-26-2013 11:58:14	5.756	14.948	899.26*	107.58	-0.95
06-26-2013 11:59:14	5.552	14.777	1000.20*	81.53	-1.00
06-26-2013 12:00:14	6.128	14.343	991.53*	37.79	-0.86
06-26-2013 12:01:15	6.218	14.070	1000.20*	14.18	-1.01
06-26-2013 12:02:15	6.183	14.104	1000.19*	19.18	-0.97
06-26-2013 12:03:15	6.319	13.936	1000.20*	25.85	-0.94
06-26-2013 12:04:15	6.370	13.857	1000.18*	31.07	-1.06
06-26-2013 12:05:15	6.142	14.157	1000.18*	35.19	-1.04
06-26-2013 12:06:15	6.242	14.085	1000.17*	38.69	-1.00
06-26-2013 12:07:15	6.305	13.985	1000.18*	40.13	-1.01
06-26-2013 12:08:15	6.333	13.961	969.94*	41.43	-1.08
06-26-2013 12:09:15	6.539	13.693	705.59	45.23	-1.03
Run Averages	02	CO2	CO	NOx	SO2
-	8	do	ppm	ppm	ppm
06-26-2013 12:09:15	5.743	14.737	963.92*	73.27	-0.92
Operator:	Robert Arn	old			
Plant Name:	Fitchburg				
Location:	Stack				

Test Run 9 End

Page 1

Test Run 10 STRATA V	Jersion 3.2				
	02	CO2	CO	NOX	S02
	Q;	0 ¹⁰	ppm	ppm	ppm
Begin calculating run	n averages				
06-26-2013 12:18:07	6.736	13.372	822.06*	36.36	-0.80
06-26-2013 12:19:07	6.843	13.261	566.18	36.78	-0.84
06-26-2013 12:20:07	7.306	12.857	486.73	34.10	-0.90
06-26-2013 12:21:07	7.218	12.903	934.04*	30.25	-0.94
06-26-2013 12:22:07	7.373	12.798	645.62	30.11	-0.88
06-26-2013 12:23:07	6,752	13.255	939.23*	31.36	-0.98
06-26-2013 12:24:08	6.580	13.595	1000.22*	33.27	-1.10
06-26-2013 12:25:07	6.832	13.237	976.42*	33.12	-1.01
06-26-2013 12:26:07	7.193	12.955	682.86	32.75	-1.07
06-26-2013 12:27:07	7.243	12.880	656.51	31.26	-0.89
06-26-2013 12:28:07	6.956	13.098	958.88*	29.77	-1.05
06-26-2013 12:29:07	7.225	12.943	649.12	30.49	-1.07
06-26-2013 12:30:07	7.203	12.904	499.12	30.19	-1.05
06-26-2013 12:31:07	6.765	13.317	842.72*	29.79	-1.09
06-26-2013 12:32:07	6.752	13.388	620.34	31.12	-1.09
06-26-2013 12:33:07	6.880	13.201	566.44	30.75	-1.00
06-26-2013 12:34:07	6.925	13.186	621.69	30.05	-1.05
06-26-2013 12:35:08	7.358	12.854	607.06	27.67	-1.01
06-26-2013 12:36:07	7.704	12.608	306.58	26.90	-1.02
06-26-2013 12:37:07	7.642	12.611	318.08	25.97	-1.06
06-26-2013 12:38:07	7.567	12.705	438.27	24.30	-1.07
Run Averages	02	CO2	CO	NOx	SO2
-	90	ę	ppm	ppm	ppm
06-26-2013 12:38:07	7.097	13.044	673.30*	30.78	-1.00
Operator:	Robert Arno	old			
Plant Name:	Fitchburg				
Location:	Stack				

Test Run 10 End

Test Run 11 STRATA V	ersion 3.2					
	02	CO2	CO	NOx	SO2	
	c,to	60	ppm	ppm	ppm	
Begin calculating run	averages					
06-26-2013 12:55:18	7.235	12.913	409.95	28.28	-1.17	
06-26-2013 12:56:18	7.583	12.689	397.09	26.41	‴ <i>ू</i> −2.35	
06-26-2013 12:57:18	8.007	12.383	244.85	26.07 <	-0.79	
06-26-2013 12:58:18	8.007	12.337	193.17	26.40	-1.60	
06-26-2013 12:59:18	7.541	12.685	209.71	28.90	-2.09'	
06-26-2013 13:00:18	7.606	12.648	211.17	29.26	-2.29	
06-26-2013 13:01:18	7.422	12,761	274.06	28.41	-2.02	
06-26-2013 13:02:18	7.290	12.876	249.30	30.21	-0.55	
06-26-2013 13:03:18	7.456	12.774	245.56	30.53	-0.77	
06-26-2013 13:04:18	7.660	12.634	235.46	30.03	-0.87	
06-26-2013 13:05:18	7.599	12.649	216.72	30.69	-0.97	
06-26-2013 13:06:18	7.730	12.576	259.54	29.67	-1.04	
06-26-2013 13:07:18	7.743	12.562	259.14	28.54	-1.26	
06-26-2013 13:08:18	7.244	12.873	268.82	30.45	-1.22	
06-26-2013 13:09:18	7.098	12.996	306.03	32.12	-1.28	
06-26-2013 13:10:18	7.374	12.846	260.55	32.26	-1.24	
06-26-2013 13:11:18	7.632	12.657	240.52	31.53	-1.31	
06-26-2013 13:12:18	8.105	12.317	276.80	27.52	-1.40	
06-26-2013 13:13:18	7.829	12.480	218.85	29.16	-1.36	
06-26-2013 13:14:18	7.687	12.594	220.11	30.19	-1.40	
06-26-2013 13:15:18	7.626	12.644	215.49	30.93	-1.27	
Run Averages	02	C02	CO	NOX	S02	
2	8	90	ppm	ppm	ppm	
06-26-2013 13:15:18	7.594	12.661	257.76	29.41	-1.34	
Operator:	Robert Arno	old				
Plant Name:	Fitchburg					
Location:	Stack					

Test Run 11 End

Test Run 12 STRATA V	ersion 3.2				
	02	CO2	CO	NOx	SO2
	8	cło	ppm	ppm	ppm
Begin calculating run	averages				
06-26-2013 13:26:06	7.708	12.485	191.41	33.26	-0.35
06-26-2013 13:27:06	7.525	12.694	163.98	35.62	-1.16
06-26-2013 13:28:06	7.148	12.940	219.81	36.34	-1.24
06-26-2013 13:29:06	7.230	12.905	259.77	36.01	-1.30
06-26-2013 13:30:06	7.084	12.996	254.19	37.39	-1.39
06-26-2013 13:31:06	6.903	13.138	284.71	39.15	-1.43
06-26-2013 13:32:06	7.034	13.040	249.17	39.84	-1.39
06-26-2013 13:33:06	7.146	12.971	238.41	39.56	-1.39
06-26-2013 13:34:06	7.305	12.841	254.98	36.73	-1,44
06-26-2013 13:35:05	6.891	13.136	302.57	38.46	-1.43
06-26-2013 13:36:05	6.914	13.134	300.44	39.08	-1.47
06-26-2013 13:37:05	6.756	13.346	336.14	39.76	-1.48
06-26-2013 13:38:06	6.646	13.497	484.10	39.76	-1.41
06-26-2013 13:39:06	6.813	13.295	425.08	39.27	-1.40
06-26-2013 13:40:06	6,951	13.097	401.62	37.32	-1.49
06-26-2013 13:41:06	6.771	13.332	375.75	39.63	-1.51
06-26-2013 13:42:06	6.962	13.101	311.11	39.89	~1.47
06-26-2013 13:43:06	7.112	12.996	273.15	39.12	-1.42
06-26-2013 13:44:06	7.294	12.870	251.56	38.58	-1.53
06-26-2013 13:45:06	7.344	12.836	321.85	35.73	-1.50
06-26-2013 13:46:06	7.260	12.878	261.94	36.13	-1.48
Run Averages	02	CO2	CO	NOx	SO2
2	ęło	c/o	ppm	ppm	ppm
06-26-2013 13:46:06	7.086	13.025	293.33	37.93	-1.36
Operator:	Robert Arno	old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 12 End					
Test Run 12 Ena					

9

O2 CO2 CO NOx SO % % ppm ppm pp Begin calculating run averages 06-26-2013 13:55:20 7.348 12.807 205.01 36.86 -1.1 06-26-2013 13:55:20 7.376 12.802 277.22 33.88 -1.2 06-26-2013 13:57:20 7.185 12.908 194.80 34.86 -1.2 06-26-2013 13:58:20 6.936 13.095 205.76 37.78 -1.2 06-26-2013 13:59:20 6.886 13.144 232.10 39.99 -1.3
% % ppm ppm pp Begin calculating run averages 06-26-2013 13:55:20 7.348 12.807 205.01 36.86 -1.1 06-26-2013 13:55:20 7.376 12.802 277.22 33.88 -1.2 06-26-2013 13:57:20 7.185 12.908 194.80 34.86 -1.2 06-26-2013 13:58:20 6.936 13.095 205.76 37.78 -1.2 06-26-2013 13:59:20 6.886 13.144 232.10 39.99 -1.3
Begin calculating run averages06-26-2013 13:55:207.34812.807205.0136.86-1.106-26-2013 13:56:207.37612.802277.2233.88-1.206-26-2013 13:57:207.18512.908194.8034.86-1.206-26-2013 13:58:206.93613.095205.7637.78-1.206-26-2013 13:59:206.88613.144232.1039.99-1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
06-26-201313:56:207.37612.802277.2233.88-1.206-26-201313:57:207.18512.908194.8034.86-1.206-26-201313:58:206.93613.095205.7637.78-1.206-26-201313:59:206.88613.144232.1039.99-1.3
06-26-201313:57:207.18512.908194.8034.86-1.206-26-201313:58:206.93613.095205.7637.78-1.206-26-201313:59:206.88613.144232.1039.99-1.3
06-26-2013 13:58:20 6.936 13.095 205.76 37.78 -1.2 06-26-2013 13:59:20 6.886 13.144 232.10 39.99 -1.3
06-26-2013 13:59:20 6.886 13.144 232.10 39.99 -1.3
06-26-2013 14:00:20 6.991 13.067 267.84 39.19 -1.3
06-26-2013 14:01:20 7.028 13.042 306.12 39.34 -1.4
06-26-2013 14:02:20 7.150 12.944 266.84 41.06 -1.3
06-26-2013 14:03:20 7.145 12.958 240.80 41.50 -1.4
06-26-2013 14:04:20 7.610 12.628 412.05 34.37 -1.4
06-26-2013 14:05:20 7.156 12.942 244.36 39.53 -1.4
06-26-2013 14:06:20 7.170 12.935 209.20 42.66 -1.4
06-26-2013 14:07:20 7.328 12.838 276.15 40.88 -1.3
06-26-2013 14:08:20 7.139 12.941 214.45 45.00 -1.3
06-26-2013 14:09:20 7.192 12.938 223.50 47.78 -1.5
06-26-2013 14:10:20 7.280 12.859 195.77 46.65 -1.4
06-26-2013 14:11:20 7.199 12.922 202.90 46.90 -1.4
06-26-2013 14:12:20 7.104 12.984 259.69 45.14 -1.3
06-26-2013 14:13:20 7.026 13.030 269.88 45.48 -1.5
06-26-2013 14:14:20 6.957 13.099 275.06 46.46 -1.4
06-26-2013 14:15:20 7.186 12.950 262.97 44.76 -1.4
Run Averages 02 CO2 CO NOX SC
ad mdd mdd % %
06-26-2013 14:15:20 7.161 12.944 249.64 41.43 -1.3
Operator: Robert Arnold
Plant Name: Fitchburg
Location: Stack
Test Run 13 End

Test Run 14 STRATA V	ersion 3.2				
	02	CO2	CO	NOx	SO2
	8	qio	ppm	ppm	ppm
Begin calculating run	averages				
06-26-2013 14:23:04	7.031	13.002	319.50	46.19	-1.22
06-26-2013 14:24:04	7.159	12.956	328.11	44.58	-1.24
06-26-2013 14:25:04	7.180	12.934	256.33	44.70	-1.46
06-26-2013 14:26:04	7.026	13.042	266.77	43.34	-1.33
06-26-2013 14:27:04	6.866	13.182	350.00	41.89	-1.39
06-26-2013 14:28:04	6.619	13.534	456.48	41.34	-1.37
06-26-2013 14:29:04	6.574	13.613	692.99	38.22	-1.41
06-26-2013 14:30:04	6.432	13.774	792.35	37.72	-1.45
06-26-2013 14:31:04	6.254	14.024	985.12*	36.75	-1.57
06-26-2013 14:32:04	6.339	13.924	1000.30*	35.03	-1.46
06-26-2013 14:33:04	6.419	13.836	976.21*	34.35	-1.52
06-26-2013 14:34:04	6.426	13.793	844.24*	34.02	-1.38
06-26-2013 14:35:04	6.447	13.789	670.83	32.76	-1.53
06-26-2013 14:36:04	6.570	13.631	495.91	33.04	-1.41
06-26-2013 14:37:04	6.374	13.878	635.62*	33.56	-1.50
06-26-2013 14:38:04	6.591	13.638	713.05*	32.56	-1.64
06-26-2013 14:39:04	6.579	13.628	534.57	33.14	-1.36
06-26-2013 14:40:04	7.267	12.925	482.31	27.96	-1.46
06-26-2013 14:41:04	7.052	13.010	392.67	29.27	-1.44
06-26-2013 14:42:04	7.097	13.016	369.63	29.73	-1.41
06-26-2013 14:43:05	7.086	13.003	399.05	29.55	-1.45
Run Averages	02	CO2	CO	NOx	SO2
-	qo	6	ppm	ppm	ppm
06-26-2013 14:43:05	6.733	13.435	569.62*	36.18	-1.43
Operator:	Robert Arno	old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 14 End					

Page 1

12.

4

Test Run 15 STRATA V	Version 3.2				
	02	C02	CO	NOx	S02
	olo	Pic.	ppm	ppm	ppm
Begin calculating run	n averages				
06-26-2013 15:26:30	7.334	12.835	335.70	27.52	-1.42
06-26-2013 15:27:30	7.230	12,904	324.47	27.76	-1.42
06-26-2013 15:28:30	7.123	12.964	352.24	27.64	-1.53
06-26-2013 15:29:30	7.084	13.007	581.83	25.84	-1.53
06-26-2013 15:30:30	7.050	13.018	311.07	26.30	-1.57
06-26-2013 15:31:30	7.038	13.048	413.89	27.30	-1.43
06-26-2013 15:32:30	7.185	12.942	356.06	27.05	-1.48
06-26-2013 15:33:30	7.205	12.918	362.59	27.41	-1.42
06-26-2013 15:34:31	7.284	12.876	389.42	26.35	-1.52
06-26-2013 15:35:31	7.504	12.721	364.20	24.99	-1.37
06-26-2013 15:36:31	7.392	12.803	273,96	27.12	-1.55
06-26-2013 15:37:31	7.296	12.862	293.32	27.74	-1.58
06-26-2013 15:38:31	7.219	12.912	293.80	28.39	-1.50
06-26-2013 15:39:31	7.394	12.805	279.26	28.07	-1.53
06-26-2013 15:40:31	7.419	12.768	337.18	26.88	-1.47
06-26-2013 15:41:31	7.283	12.874	280.75	28.81	-1.61
06-26-2013 15:42:31	7.169	12.935	307.17	29.92	-1.63
06-26-2013 15:43:31	7.210	12.919	316.71	30.90	-1.45
06-26-2013 15:44:31	7.256	12.899	297.85	31.33	-1.49
06-26-2013 15:45:31	7.535	12.729	356.75	29.32	-1.46
06-26-2013 15:46:31	7.508	12.705	360.45	28.95	-1.45
Run Averages	02	C02	CO	NOx	SO2
	ę	8	ppm	ppm	ppm
06-26-2013 15:46:31	7.272	12.878	342.32	27.89	-1.50
Operator:	Robert Arno	old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 15 End					

Test	Run	2	ST	rata	Ver	síon	3.2			
							02		CO2	THC
							010		ę,	ppm
Begir	cal	cul	lat	ing 1	cun	aver	ades			* *
06-27	7-201	3 (08:	21:0	1	7.	286	12.	526	11.69
06-21	7-201	3 (าล・	22.0	1	7	347	12	448	9.18
06-21	7-201	3 (18.	22.0	1	6	785	13	023	10 79
00-2	7 201	ວ (ວ (. o.	23.0.	1	с. с	015	12	020	11 17
06-2	7-201	20		24:0.	1	0.	040	12.	070	7 00
06~2	/201	.3 (18:	25:0.	1	ь.	808	12.	1/0	7.00
06-2	/-201	.3 (180	26:0	1	6.	706	13.	169	7.01
06-27	7-201	.3 (08:	27:0	1	6.	749	13.	102	1.03
06-27	7-201	.3 (08:	28:0	1.	6.	829	12.	978	9.08
06-21	7-201	.3 (08:	29:01	1	6.	596	13.	250	12.36
06-27	7-201	.3	08:	30:03	1	6.	493	13.	448	19.91
06-27	7-201	.3	180	31:0	1	6.	535	13.	388	16.00
06-27	7-201	.3	08:	32:0	1	6.	565	13.	329	33.71
06-27	7-201	.3 1	08:	33:03	2	6.	507	13.	407	25.27
$06 - 2^{2}$	7-201	3	08:	34:0	2	6.	457	13.	467	24.50
06-2	7-201	3	08:	35:0	2	6.	572	13.	351	14.81
06-2	7-201	3	001	36.0	2	6	777	13.	093	15.30
06-2	7-201	3	00.	37.0	2	6	670	13	246	10 12
06-2	7 201	2	00. no.	30.0	2	6	610	13	312	8 89
00-2	7 201	.ວ ່	00.	20.0	2	с. С	551	12	201	15 25
06-2	7~201	. 3	08:	39:0	2	0.	551 551	10.	201	22.20
06~2	/-201	.3	08:	40:0	2	ь.	386	10.	524	15 05
06-2	/-201	.3	08:	41:0	2	6.	440	13.	548	10.80
06-2	/-201	.3	08:	42:0	2	6.	456	13.	499	22.17
06-2	7-201	_3	08:	43 : 0	2	6.	413	13.	549	23.01
06-2	7-201	_3	08:	44:0	2	6.	687	13.	201	16.89
06-21	7-201	.3	08:	45:0	2	б.	466	13.	475	21.47
06-2	7-201	L3	08:	46:0	2	б.	722	13.	156	13.67
06-2	7-201	L3	08:	47:0	2	6.	490	13.	430	32,50
06-2	7-201	L3	08:	48:0	2	6.	814	13.	040	15.45
06-2	7-201	L3	08:	49:0	2	6.	796	13.	057	9.57
06-2	7-201	3	08:	50:0	1	7.	107	12.	711	7.53
06-2	7-201	3	08:	51:0	1	7.	372	12.	484	7.30
06-2	7-201	13	00. 08.	52.0	2	7	530	12	363	6.56
06-2	7-201	13	00.	53.0	2		317	12	492	5 42
06-2	7 201	1.0	00.	53.0	2	· ·	275	12	516	5 22
06-2	7 - 201	1.0	00:	54:0	2		273	12	520	0.27
06-2	7-201	13	00:	55:0	2	· · ·	294	12.	521	7 62
06-2	7-201	13	08:	56:0	2		301	12.	.520	7.02
06-2	7-20-	13	08:	57:0	2		399	12.	403	5.49
06-2	7-20-	13	08:	58:0	2		263	12.	.527	/.18
06-2	7-201	13	08:	59:0	2	7.	178	12.	.624	6.80
06-2	7-201	13	09:	00:0	2	7.	057	12.	.691	5.25
06-2	7-201	13	09:	01:0	2	6.	820	13.	.043	6.20
06-2	7-201	13	09:	02:0	2	6.	.758	13.	.124	5.37
06-2	7-201	13	09:	03:0	2	б.	835	13.	.026	9.34
06-2	7-201	13	09:	04:0	2	6.	935	12.	.874	6.77
06-2	7-201	13	09:	05:0	2	7.	067	12.	.693	7.17
06-2	7-203	13	09:	06:0	2	7.	164	12	.611	6.05
06-2	7-20:	13	09:	07:0	2	7.	320	12.	.527	8.07
06-2	7-20	13	09:	08:0	2	7.	.090	12.	.652	5.94
06-2	7-20	13	09:	09:0	2	7.	164	12	.619	5.37
06-2	7-20	13	09:	10:0	2	7	371	12	.474	5.40
06-2	. 20. 7-201	13	09.	11.0	2	7	453	12	428	5,89
00 2	7_20	13	na.	12.0	2	7	503	12	387	4 95
00-2	7.20.	12	00.	12.0	2	7.	126	12	110	1 54
06-2	7 20.	エン 1つ	091	14.0	2	7	125	12	131	1.01
06-2	7-20.	13	09:	15.0	2	7.	420	12	.434	4.44
06-2	7-20.	10	09:	:10:0	2	· · ·	.400 E01	10	420	3 00
06-2	7~20.	⊥3 1 0	09:	:10:0	11	<u>_</u> .	. JUL	12	.400	3.03
06-2	7-20	13	09:	: 1/:0	1		.000	12	.202	5.12
06-2	1-20	13	09:	18:0	11		.040	ΤZ	.294	2.63
06-2	7-20	13	09:	:19:0	2	1.	.919	12	.115	4.06
06-2	7-20	⊥3	09:	:20:0	12	7.	.689	12	.261	3.87
Run	Aver	age	:5				02		C02	THC
							es.		do -	ppm
06-2	7-20	13	09:	:20:0	12	б.	.998	12	.868	10.84
Oper	ator	:				Rober	rt Arno	ld		
Plan	t Na	me:				Fitcl	nburg			
Loca	tion	:				Stacl	k			
Test	Run	2	Εı	nd						

PMID - 2 A

YOC -1

Test	Run 3	STRATA V	ersion 3.2		
			02	C02	THC
			ço	050	ppm
Begin	n calc	ilating ru	n averages		
06-2	7-2013	09.27.16	8.391	11,616	2.81
06-2	7-2013	09.28.15	8 123	11 921	2 81
06-2	7-2013	09.20.15	7 917	12 111	2 65
06-2	7 2013	09:29:15	7.917	11 070	2.05
06-2	1-2013	09:30:15	8.110	11.9/9	3.73
06~2	/~2013	09:31:16	8.057	12.025	2.76
06-2	7-2013	09:32:16	8.332	11.849	2.45
06-2	7-2013	09:33:16	8.530	11.691	2.10
06-2	7-2013	09:34:16	8.599	11.642	1.86
06-2	7-2013	09:35:16	8.419	11.761	2.10
06-2	7-2013	09:36:16	8.385	11.788	2.20
06-2	7-2013	09.37.16	8 083	12 013	1 52
06-2	7-2013	09.39.16	7 801	12.010	1 47
00-2	7 2013	09.30.10	7.001	12.172	1 20
06-2	7-2013	09:39:10	7.755	12.244	1.35
06-2	/-2013	09:40:16	1.885	12.105	1.24
06-2	7-2013	09:41:16	7.811	12.199	1.92
06-2	7-2013	09:42:16	7.503	12.406	1.50
06-2	7-2013	09:43:16	7.462	12.449	1.53
$06 - 2^{-1}$	7-2013	09:44:15	7.393	12.491	1.81
06-2	7-2013	09.45.15	7 471	12,439	1.82
06-2	7-2013	09.16.15	7 607	12 364	2 20
00-2	7 2013	09.40.15	7.007	10 003	2.20
06-2	7-2013	09:47:15	7.704	12.223	2.39
06-2	/-2013	09:48:15	7.391	12.494	2.05
06-2	7-2013	09:49:15	7.515	12.414	2.50
06-2	7-2013	09:50:15	7.436	12.469	3.03
06-2	7-2013	09:51:15	7.405	12.489	4.16
06-2	7-2013	09:52:15	7.646	12.342	5.76
06-2	7-2013	09:53:15	7.578	12.372	4.60
0.6 - 2	7-2013	09:54:15	7.647	12.338	4.09
06-2	7-2013	09.55.15	7 676	12 314	3 99
00-2	7 2013	09.55.15	7.070	12.311	3 95
06-2	7-2013	09:50:15	7.074	12.311	3.00
06-2	7-2013	09:57:15	7.4/3	12.445	4.20
06-2	7-2013	09:58:15	7.621	12.358	4.83
06-2	7-2013	09 : 59:15	7.572	12.379	4.43
06-2	7-2013	10:00:15	7.499	12.435	3.83
06-2	7-2013	10:01:15	7.668	12.329	3.79
06 - 2	7-2013	10:02:15	7.756	12.269	3.56
06-2	7-2013	10:03:15	7.801	12.249	4.66
06-2	7-2013	10.04.16	7 572	12.359	4.85
00 2	7 2013	10.05.16	7 123	12.000	1.00
06-2	7 2013	10.05.10	7.425	10 464	3.27
06-2	7-2013	10:00:16	7.401	12.404	3.04
06-2	7-2013	10:07:16	/./14	12.306	3.04
06-2	7-2013	10:08:16	7.860	12.197	3.30
06-2	7-2013	10:09:16	7.842	12.196	4.31
06-2	7-2013	10:10:16	7.584	12.379	4.13
06-2	7-2013	10:11:16	7.550	12.389	4.05
06-2	7-2013	10:12:15	7.623	12.357	3.66
06 - 2	7-2013	10:13:15	8.004	12.137	3.32
06-2	7-2013	10.14.15	8 4 9 5	11 782	4.98
06-2	7_2013	10.15.15	8 465	11 731	2 98
00-2	7 2013	10.10.15	7 004	12 100	2,50
06-2	7-2013	10:10:15	7.904	12,100	2.01
06-2	7-2013	10:17:15	8.032	12.093	2.4/
06-2	7-2013	10:18:15	8.043	12.0/2	2.19
06-2	7-2013	10:19:15	7.798	12.238	2.67
06-2	7-2013	10:20:15	8.090	12.064	3.52
06-2	7-2013	10:21:15	8.021	12.094	2.36
06-2	7-2013	10:22:15	8.135	12.025	2.35
06-2	7-2013	10:23:16	7,983	12.127	2.52
06-2	7-2013	10:24.16	8.120	12.051	2 32
06-2	7-2013	10,25,16	8 011	12 120	2.02
06-2	7 2013	10.20:10	0.011	12,120	2.13
06-2	1-2013	10:20:10	0.100	12.039	2.33
Run	Averag	es	02	C02	THC
			6	0	ppm
06-2	7-2013	10:26:16	7.845	12.189	3.04
Oper	ator:		Robert Ar	nold	
Plan	t Name	:	Fitchburg	ſ	
Loca	tion:		Stack		

Test Run 3 End

YOC - 2

PM10 3A

Test Run 5	STRATA Ve	ersion 3.2	
		02	CO2
		010	oto
Begin calcu	lating rur	averages	10 007
06-27-2013	10:55:57	7.809	12.22/
06-27-2013	10:56:57	7.020	12.231
06-27-2013	10.58.57	7 638	12.240
06-27-2013	10:59:57	7.629	12.381
06-27-2013	11:00:57	7.833	12.259
06-27-2013	11:01:57	8.017	12.111
06-27-2013	11:02:57	8.043	12.101
06-27-2013	11:03:57	8.445	11.816
06-27-2013	11:04:57	7.970	12.12/
06-27-2013 06-27-2013	11:05:57	8 113	12.094
06-27-2013	11:07:57	8.053	12.088
06-27-2013	11:08:57	8.058	12.092
06-27-2013	11:09:57	8.099	12.061
06-27-2013	11:10:57	8.156	12.010
06-27-2013	11:11:57	7.910	12.191
06-27-2013	11:12:57	8.110	12.0/3
06-27-2013	11.14.57	8.306	11.879
06-27-2013	11.14.57	8,198	11,981
06-27-2013	11:16:57	8.147	12.034
06-27-2013	11:17:57	8.167	12.016
06-27-2013	11:18:57	8.023	12.104
06-27-2013	11:19:57	8.103	12.071
06-27-2013	11:20:57	8.141	12.026
06-27-2013	11:21:57	8.035	11 020
06-27-2013	11.22.57	8 507	11.920 11.765
06-27-2013	11:24:57	8.214	11.941
06-27-2013	11:25:57	8.356	11.865
06-27-2013	11:26:57	8.021	12.089
06-27-2013	11:27:57	7.939	12.151
06-27-2013	11:28:57	7.760	12.260
06-27-2013	11,20,57	7.839	12.219
06-27-2013	11.30.57	7 745	12,107
06-27-2013	11:32:5.7	7.664	12.331
06-27-2013	11:33:57	7.688	12.318
06-27-2013	11:34:57	7.848	12.221
06-27-2013	11:35:57	7.512	12.419
06-27-2013	11:36:57	7.698	12.328
06-27-2013	11.30.57	7.451	12.46/
06-27-2013	11.30.57	7 296	12.194 12.300
06-27-2013	11:40:57	7.274	12.595
06-27-2013	11:41:57	7.240	12.682
06-27-2013	11:42:57	7.424	12.491
06-27-2013	11:43:56	7.392	12.521
06-27-2013	11.44:57	7.487	12.465
06-27-2013	11:45:57	7.348	12.540
06-27-2013	11:47:57	7.295	12.584
06-27-2013	11:48:57	7.034	12.867
06-27-2013	11:49:57	7.066	12.818
06-27-2013	11:50:57	7.185	12.679
06-27-2013	11:51:57	7.180	12.697
06-27-2013	11.52.57	7 208	12 637
06-27-2013	11:54:57	6.942	12.953
Run Averag	es	02	C02
		- 90	00
06-27-2013	11:54:57	7.796	12.259
Operator:		Robert Arno	ld
Plant Name	:	fitchburg Stack	
Test Run 5	End	JUCIN	

PMIO 3B

Appendix I

FIELD ANALYSIS job: VINCTAC Fitchburg test date(s): 6-26-13; 6-27-13

DATE	TIME	TEMP	OHAUS	SCALE
7-10-13	1170	77	1-0000	1.0000
7-11-13	1200	77	1.0000	1.0001
7-11-13	1200	77	\$3,0000	50.0507
7-12-13	1000	76	50.0000	50,0007

CALIBRATION

SAMPLE FILTER RESULTS

	DATE:	7-10-13	7-11-13					
	TIME:	1130	1200					
FIL	TER#/ RUN#	weight 1	weight 2	weight 3	weight 4	weight 5	final	tare
3590	T3P-1	0.3545	0.3544				0.3545	0.3429
3541	TSP-2	0.3570	0.3571				0.3571	0.3432
3592	TSP-3	0.3629	0.7628				0.3629.	0.3419
3593	TSP blank	0.3375	0.3377				0.3376	0.3377
372	PM2.5-1	0.1206	0.1208	¢.			0.1207	0.1165
373	im2.5-2	0.1200	0.1202				0,1201	0.1158
374	PM2.5-3	0.1203	0.1203				0.1203	0.1163
371	ANIS blank	0.1158	0.1159				0.159	0.1159

SAMPLE BEAKER RESULTS

	DATE:	7-11-13	7-12-13						
	TIME:	1200	1000						
BE/	AKER#/ RUN#	weight 1	weight 2	weight 3	weight 4	weight 5	final	tare	vol (ml)
21	TSP-1	49,6213	49.6213				49.6213	49,6145	60
22	TSP-2	60.2762	60.2764				602763	60.2673	60
23	TSP-3	64.4696	64.4697				64.4695	64-4558	70
24	pmio-i	622503	62.2603				62.2603	62.2545	60
25	PMIO-2	61.1679	61.1682				61.1681	61.1617	70
26	PM10-3	65.5854	65-5858				65.5856	65.5810	70
27	PM2.5-1	61.4327	61.4327				61.4327	61.4310	60
28	PM2.5-2	65.5620	65.5622				65.5621	65.5595	60
29	PM2.5-3	63.3908	63.3910				63.3909	\$3199	60
30	blank	66-1445	66.8443			· ·	66.8444	66.8442	100
	- -								

Your P.O. #: 754857 Site Location: PINETREE FITCHBURG

Attention: Bob Arnold

CEM Services Inc 360 Old Colony Rd Suite 1 Norton, MA USA 02766

Report Date: 2013/07/15

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3A4670 Received: 2013/07/02, 12:45

Sample Matrix: Stack Sampling Train # Samples Received: 7

	Quantity	Date Extracted	Date	Laboratory Mathod	Method Reference
Analyses	Quantity	EXILACIEU	Analyzeu	Laboratory Method	Neverence
Extractable Condensables (M202)	6	2013/07/10	2013/07/10	BRL SOP-00118	EPA 202
Non Extractable Condensibles (M202)	5	2013/07/12	2013/07/12	BRL SOP-00118 / BRL	EPA 202
				SOP-00109	
Weight of Solvent from Impingers	6	N/A	2013/07/10		
Weight of Water from Impingers	5	N/A	2013/07/10		

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Clayton Johnson 15 Jul 2013 16:08:44 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Clayton Johnson, Project Manager - Air Toxics, Source Evaluation Email: CJohnson@maxxam.ca Phone# (905) 817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Page 1 of 7

Maxxam

Success Through Sciences

Maxxam Job #: B3A4670 Report Date: 2013/07/15 **CEM Services Inc**

Site Location: PINETREE FITCHBURG Your P.O. #: 754857

EPA M202 CONDENSIBLE PM (STACK SAMPLING TRAIN)

Mayyam ID	1	SC3094	I SC3095	SC3103	SC3104	SC3105		
Sampling Date		2013/06/26	2013/06/26	2013/06/26 00:01	2013/06/27 00:01	2013/06/26 00:01		
	Units	RB-H2O-M202	RB-ACE-M202	RB-HEX-M202	REC BL-M202	R1-M202	RDL	QC Batch
								·
Weight	g	200	N/A	N/A	180	310	0.1	3272813
Weight of Solvent	g	N/A	160	130	71	110	0.1	3272811
Inorganic Condensibles	mg	0.9	N/A	N/A	2.6	5.2	0.5	3277249
Organic Condensibles	mg	N/A	<1.0	<1.0	<1.0	1.1	1.0	3272805
		I			iteres and a second			
N/A = Not Applicable								
RDL = Reportable Detect	tion Lin	nit						

QC Batch = Quality Control Batch

SC3107 SC3106 Maxxam ID 2013/06/27 2013/06/27 Sampling Date 00:01 00:01 RDL QC Batch R3-M202 Units R2-M202 3272813 0.1 340 280 Weight g 0.1 3272811 99 Weight of Solvent 130 g 3277249 0.5 4.3 Inorganic Condensibles 4.6 mg 1.0 3272805 <1.0 Organic Condensibles 1.0 mg RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: B3A4670

Report Date: 2013/07/15

CEM Services Inc

Site Location: PINETREE FITCHBURG Your P.O. #: 754857

Test Summary

Maxxam ID	SC3094					Collected 2013/06/26	
Sample ID	RB-H2O-M202 Steels Sampling Troin					Received 2013/07/02	
watrix	Stack Sampling Train						
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Non Extractable C	ondensibles (M202)	BAL	3277249	2013/07/12	2013/07/12	Frank Mo	
Weight of Water fi	rom Impingers		3272813	N/A	2013/07/10	Frank Mo]
<u></u>							
						Collected 2012/06/26	
Maxxam ID	SC3095					Shinned	
Sample ID	RB-ACE-M202					Bessived 2013/07/02	
Matrix	Stack Sampling Train					Received 2013/07/02	
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Extractable Conde	ensables (M202)	BAL	3272805	2013/07/10	2013/07/10	Manoj Gera	
Weight of Solvent	from Impingers		3272811	N/A	2013/07/10	Brenda Moore	
k							
						a w (b 0010/00/00	
Maxxam ID	SC3103					Collected 2013/06/26	
Sample ID	RB-HEX-M202					Shipped	
Matrix	Stack Sampling Train					Received 2013/07/02	
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Extractable Cond	ensables (M202)	BAL	3272805	2013/07/10	2013/07/10	Manoj Gera	
Weight of Solven	from Impingers	************	3272811	N/A	2013/07/10	Brenda Moore	
Thoight of Contoin							
Maxxam ID	SC3104					Collected 2013/06/27	
Maxxam ID Sample ID	SC3104 REC BL-M202					Collected 2013/06/27 Shipped	
Maxxam ID Sample ID Matrix	SC3104 REC BL-M202 Stack Sampling Train					Collected 2013/06/27 Shipped Received 2013/07/02	
Maxxam ID Sample ID Matrix	SC3104 REC BL-M202 Stack Sampling Train					Collected 2013/06/27 Shipped Received 2013/07/02	
Maxxam ID Sample ID Matrix Test Description	SC3104 REC BL-M202 Stack Sampling Train	Instrumentation	Batch	Extracted	Analyzed	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst	1
Maxxam ID Sample ID Matrix Test Description Extractable Cond	SC3104 REC BL-M202 Stack Sampling Train ensables (M202)	Instrumentation BAL	Batch 3272805	Extracted 2013/07/10	Analyzed 2013/07/10 2012/07/12	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable C	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202)	Instrumentation BAL BAL	Batch 3272805 3277249	Extracted 2013/07/10 2013/07/12	Analyzed 2013/07/10 2013/07/12 2013/07/12	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable (Weight of Solven	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers	Instrumentation BAL BAL	Batch 3272805 3277249 3272811 2272842	Extracted 2013/07/10 2013/07/12 N/A	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable C Weight of Solven Weight of Water	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers	Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813	Extracted 2013/07/10 2013/07/12 N/A N/A	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Non Extractable Cond Weight of Solven Weight of Water	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers	Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813	Extracted 2013/07/10 2013/07/12 N/A N/A	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Non Extractable (Weight of Solven Weight of Water	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers	Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813	Extracted 2013/07/10 2013/07/12 N/A N/A	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Non Extractable (Weight of Solven Weight of Water	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers	Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813	Extracted 2013/07/10 2013/07/12 N/A N/A	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo Collected 2013/06/26 Shipped	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Non Extractable (Weight of Solven Weight of Water Maxxam ID Sample ID	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers SC3105 R1-M202 Stack Sampling Train	Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813	Extracted 2013/07/10 2013/07/12 N/A N/A	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo Collected 2013/06/26 Shipped Received 2013/07/02	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Non Extract	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers SC3105 R1-M202 Stack Sampling Train	Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813	Extracted 2013/07/10 2013/07/12 N/A N/A	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo Collected 2013/06/26 Shipped Received 2013/07/02	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Non Extractable C Weight of Solven Weight of Water Maxxam ID Sample ID Matrix Test Description	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers SC3105 R1-M202 Stack Sampling Train	Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813 Batch	Extracted 2013/07/10 2013/07/12 N/A N/A	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10 Analyzed	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo Collected 2013/06/26 Shipped Received 2013/07/02 Analyst	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Non Extractable Cond Weight of Solven Weight of Water Maxxam ID Sample ID Matrix Test Description Extractable Cond	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers SC3105 R1-M202 Stack Sampling Train	Instrumentation BAL BAL Instrumentation BAL	Batch 3272805 3277249 3272811 3272813 Batch 3272805	Extracted 2013/07/10 2013/07/12 N/A N/A Extracted 2013/07/10	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10 Analyzed 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo Collected 2013/06/26 Shipped Received 2013/07/02 Analyst Manoj Gera	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Weight of Solven Weight of Water Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers SC3105 R1-M202 Stack Sampling Train I lensables (M202) Condensibles (M202)	Instrumentation BAL BAL Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813 Batch 3272805 3277249	Extracted 2013/07/10 2013/07/12 N/A N/A Extracted 2013/07/10 2013/07/12	Analyzed 2013/07/10 2013/07/12 2013/07/10 2013/07/10 2013/07/10 2013/07/10 2013/07/12	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo Collected 2013/06/26 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo	
Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Weight of Solven Weight of Solven Weight of Water Maxxam ID Sample ID Matrix Test Description Extractable Cond Non Extractable Cond Weight of Solven	SC3104 REC BL-M202 Stack Sampling Train ensables (M202) Condensibles (M202) t from Impingers from Impingers SC3105 R1-M202 Stack Sampling Train lensables (M202) Condensibles (M202) t from Impingers	Instrumentation BAL BAL Instrumentation BAL BAL	Batch 3272805 3277249 3272811 3272813 Batch 3272805 3277249 3272811	Extracted 2013/07/10 2013/07/12 N/A N/A Extracted 2013/07/10 2013/07/12 N/A	Analyzed 2013/07/10 2013/07/10 2013/07/10 2013/07/10 2013/07/10 2013/07/10 2013/07/12 2013/07/10	Collected 2013/06/27 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore Frank Mo Collected 2013/06/26 Shipped Received 2013/07/02 Analyst Manoj Gera Frank Mo Brenda Moore	

Maxlam

Maxxam Job #: B3A4670 Report Date: 2013/07/15

CEM Services Inc

Site Location: PINETREE FITCHBURG Your P.O. #: 754857

Test Summary

Maxxam ID	SC3106	Collected	2013/06/27
Sample ID	R2-M202	Shipped	
Matrix	Stack Sampling Train	Received	2013/07/02

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Extractable Condensables (M202)	BAL	3272805	2013/07/10	2013/07/10	Manoj Gera
Non Extractable Condensibles (M202)	BAL	3277249	2013/07/12	2013/07/12	Frank Mo
Weight of Solvent from Impingers		3272811	N/A	2013/07/10	Brenda Moore
Weight of Water from Impingers		3272813	N/A	2013/07/10	Frank Mo

Maxxam ID SC3107					Collected 2013/06/27 Shipped	
Matrix Stack Sar	mpling Train				Received 2013/07/02	
Test Description	Instrumentatio	n Batch	Extracted	Analyzed	Analyst	
Extractable Condensables (N	M202) BAL	3272805	2013/07/10	2013/07/10	Manoj Gera	
Non Extractable Condensible	es (M202) BAL	3277249	2013/07/12	2013/07/12	Frank Mo	
Weight of Solvent from Impir	ngers	3272811	N/A	2013/07/10	Brenda Moore	
Weight of Water from Imping	jers	3272813	N/A	2013/07/10	Frank Mo	

Page 4 of 7

Maxiam

Maxxam Job #: B3A4670 Report Date: 2013/07/15 CEM Services Inc

Success Through Science«

Site Location: PINETREE FITCHBURG Your P.O. #: 754857

GENERAL COMMENTS
FILTERS : Untared filters were received.
Sample SC3094-01: REAGENT BLANK : Reagent blank result reported as per in 150 ml according to M-202. REAGENT BLANK : Whitish residue found in Teflon Dish.
Sample SC3095-01: REAGENT BLANK : Reagent blank result reported as per in 150 ml according to M-202. REAGENT BLANK : Whitish residue found in vial.
Sample SC3103-01: REAGENT BLANK : Reagent blank result reported as per in 150 ml according to M-202.
Sample SC3104-01: ORGANIC EXTRACTION : Whitish residue found in vial. INORGANIC EXTRACTION : Whitish residue found in Teflon dish.
Sample SC3105-01: ORGANIC EXTRACTION : Whitish residue found in vial. INORGANIC EXTRACTION : Whitish residue found in Teflon dish.
Sample SC3106-01: ORGANIC EXTRACTION : Whitish residue found in vial. INORGANIC EXTRACTION : Whitish residue found in Teflon dish.
Sample SC3107-01: ORGANIC EXTRACTION : Whitish residue found in vial. INORGANIC EXTRACTION : Whitish residue found in Teflon dish.
Results relate only to the items tested.

Maxam

CEM Services Inc Attention: Bob Arnold Client Project #: P.O. #: 754857 Site Location: PINETREE FITCHBURG

Quality Assurance Report

Maxxam .	Job Number:	GB3A4670	

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3272805 MGE	Spiked Blank	Organic Condensibles	2013/07/10		95	%	70 - 130
	Spiked Blank DUP	Organic Condensibles	2013/07/10		92	%	70 - 130
	RPD	Organic Condensibles	2013/07/10	2.5		%	20
	Method Blank	Organic Condensibles	2013/07/10	<1.0		mg	
3277249 MGE	Method Blank	Inorganic Condensibles	2013/07/12	<0.5		mg	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: B3A4670

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Frank Mo, B.Sc., Inorganic Lab. Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Max xam Analytics International Corporation o/a Maxxam Analytics 6740 Campobelio Road, Mississauga, Ontario, L5N 2L8 Tel. (905) 817-5770 Toll-Free: 800-563-6266 Fax. (905) 817-5777 www.maxxam.ca

Appendix J

FUEL FACTOR CALCULATION SHEET

- PLANT : Pinetree Fitchburg
- LOCATION : Wood Fired Boiler
- DATE : 06/26/13

-40

1000000 (3.64%H+1.53%C+0.57%S+0.14%N-0.46%O)

Fd FACTOR = -----GCV

1000000 (0.321 SCF/LB * % C) Fc FACTOR = _____ GCV

Fι	JEL	:	Wood	Chips	
olo	HYC	ROGEN	=	8.63	3
010	CAF	RBON	Managar Managar	52.0	7
olo	SUI	FUR	=	0.13	3
0)0	NIT	ROGEN	-	0.4	9
010	OXY	GEN	=	* 38.13	3
GC	CV (Btu/l]	o) =	850	С
CA	ALCU	ILATED	Fd	- FACTOR	-

CALCULATED FC - FACTOR = 1966

11022

Analysis Report

Sterling Analytical, Inc. West Springfield, MA 01089 Phone (413) 214-6541 Fax (413) 214-6842 email-madhu@sterlinganalytical.com

Sample Number	39005	
Station	Combustion Comp.Asso.Inc.	Report Date 7/12/13
Contract		Work Order 13-0935
	7/0/40	Source Identification
Date Received	7/2/13	Pine-Fitchburg-13-1
As Fired	7/1/13	Wood
Air Dried Moistur	e 30.71%	

Proximate/Ultimate Analysis						
Deremeter	Date		Day	Air Driad	Raathad	
	Allalyzeu	As neceived		All Dileu	INICTION	
Moisture		44.77%		20.29%		
Ash,%	7/11/13	0.35	0.63	0.5	ASTM D-3174	
BTU/Lb	7/11/13	4711	8500	6800	ASTM D-5865	
Sulfur, %	7/11/13 Less Than	0.07	0.13	0.1	ASTM D-4239	
Carbon,%	7/11/13	28.75	52.07	41.5	ASTM D-5373	
Hydrogen,%	7/11/13	4.77	8.63	6.88	ASTM D-5373	
Nitrogen,%	7/11/13	0.27	0.49	0.39	ASTM D-5373	
Oxygen,%	7/9/13	21.08	38.18	30.43	ASTM D-3176	

Comments

Madhu Shah, Laboratory Supervisor

Date

Mass Certification - MA-00071 Conn Certification - PH-0520

ALL the information contained in this report has been reviewed for accuracy and checked against all quality control requirements outlined in each applicable method. This report may not be reproduced, except in full, without written approval from Sterling Analytica inc

Appendix K

METHOD 5 SAMPLING DATA SHEET

Page__of___

racinty	•	Pinetree Fitchburg
Date	:	6/26/13

Run

<u>S-0930</u> Run Time : OS 2

Filter No. : 3590 Nozzle No.: 0250

Unit : Stack

TARE 0.3429

Leak Test Data

			Initial	Rate:				Final	Rate:		
		Pr	obe: O, C	<u>1615</u>	"Hg		Probe:	0.06	<u>_&</u> "Hg	5	
i i		Pi	tots: 🖉	<u>42</u>	"H ₂ O		Pitots:	Ou 3	"H	$_{2}O$	
	Initial I	Meter Re	ading: 4	1245	83	Final	Meter Re	eading:	470.0	48	
	Time	Trav.	Delta	Delta	Meter	DGM	DGM	Imp	Stack	Hot	Pump
	Hr Min	<u>Point</u>	P	H	Vol.	IN	Out	Temp	Temp	Temp	Vac
	<u> </u>	<u>5 A1</u>	0.90	1.80	426.6	<u>N/A</u>	93	67	367	250	4
	5	2	0.94	1.88	LAR S	<u> </u>	94	6C	34C	252	.<
	7.0	3	1.00	2.00	4BO.6		<u>94</u>	Č la	360	ZZ	\leq
	<u> </u>	4	1.00	00.00	452.5		94	<u>Ľċ</u>	202	250	5
	12	<u> 5</u>	1.00 -	2.00	434.9		94	63	369	241	5
	<u> </u>	6	0.95	1.90	45.0		94	66	369	263	Ŝ
	37	<u> </u>	0.84	1.69	4391		911	<u>Ĉ</u> Ĺ	370	245	5
	<u> 20</u>	8	0,95	192	440.6		9G	<u>ÂŬ</u>	269	142	G
ļ	67	5 9	0.93	1.86	442.5		96	<u>Ğú</u>	Sig	54%	4
1	<u> </u>	10	0.83	1.66	444.5		96	TCC	360	244	ć
ъ.,-	27:	5 11	0.73	146	446.2		97	65	360	251	Z
~		12	0.00	1.40	4429		48	C.C.	25U	24 P	4
	<u> 212</u>	<u>B1</u>	0.Te	1.5G	449.8		dly	ŽÝ	247	24	4
		2	O.Qã	1.64	451.2		95	25	220	DSI	Ġ
Ļ	37.4	3	N.OG	2.10	463.9	·	97'	66	RIC	553	5
	46	4	LOS	2.14	455.6		1971	66	ZŇ	SY9	$\hat{\boldsymbol{\varsigma}}$
Ļ	6	5 5	1.00	2.00	457.6		an	65	370	NGa	<
Ļ	45	6	0.90	<u>i.pð</u>	459.6		97	11	3	555	<
		7	<u>2.92</u>	1, 64	461.6		97	ŽC	271	SSC	<
Ļ	50	8	6.96	1.02'	4635	:	97	ŽĒ	372	350	~
		5 9	<u>195</u>	1. 40	4656	-	96		Zí Y	253	6
-	<u> </u>	10	0.92	Y.PY	467.8		96	25	zca	254	6
Ļ	57,6	11	OIE	136	469.5		95	66	366	352	X
L		12	6.65	<u>1.30</u>	ind	J	94	KA	361	250	$\langle \rangle$
Genera	al:	C)perator	rs:	Conditi	ons:	Mo	isture	Gross	Tare	Net
Box No	o :MBJ	- B	ox :	_CP	Ambient	Temp:		Data:	204	100	ml
Delta H	H@: 1.66	6 Pr	obe:_M	D	Pbar	:				100	ml
Gamm	a Y: 1.01	71 CE	EMS: B	Α	Static P	:	<u>-0,</u> Ç7		1.21	100	ml
										0	
			RAT	P 1, 3	2,3	0	6 m		51	550	g
						Oz	COL.	0			
		^			ەنچە	9.38	1534	, 0.2			
	BAN				,	7.40	12.31	1.30			
\sum	CZO SERVICE	360 Old C	Colony Road	i, Suite 1, N	lorton, MA 0	2766	1296	· 0. 2			
					St integration	7.22	12.80	, 6.c	Terr) 1997 - 1997 1997 - 1997	

METHOD 5 SAMPLING DATA SHEET

Facilit	y: Pinetr	ee Fitchburg
Date	:_6	126/2013
Run	•	

Unit : Stack

Run Time : 695

Page __of __

Run

Filter No. :___ Nozzle No.:

Leak Test Data

	LICUIN I USU				LOLL	4466						
	Initial Rate:			\mathbf{F}				Final Rate:				
	Probe: a.d. 15			"Hø	Prober $\alpha \in \mathcal{O}$ "He							
	Pitots: Øa Z			"H ₂ O		Pitots: 0 2 "H-O						
T	Initial Meter Reading: 1071 Ca					Final Mater Reading: C10 964						
	Time	Tuar	Delta	<u>71.56</u>	P. C. L	DOM	DOM		211	238		
1 7 7	1 line	Trav.	Dena	Dena	Meter	DGM	DGM	Imp	Stack	Hot	Pump	
	r Min	Point	P	H	Vol.	<u>IŊ</u>	Out	Temp	Temp	Temp	Vac	
	<u>a.s</u>	<u>A1</u>	0.42	1.04	975.6	N/A	196	67	38	229	Ý	
	<u> </u>	2	0.95	1.90	43. G	1	95	7.S	570	132	U	
	25	3	NOA	3.00	und		làn'	C.G.	871.	250	Ś	
	63	4	LOC	2.10	LAC		do	pu-	12-12	543	5	
	125	5	NAC	h IA	BAR		64	20	25	20		
		6	A DA	NCA	18-81		100	27	5//	530	Pa	
	107	7	MAU MAC	1 COL	1.80 2		178	97	13/1	ner	2	
	12	0	V.15	<u>H-2Q</u> -	182-51		137	63	51	21	<u> </u>	
	-40	0	1 710	2.20	48121		+	66	52	P JX	-6	
	-p25-	9	1100	3.00	hga. SI		<u> 4 / </u>	66	515	Q44	le	
	<u>}</u>	10	6.92	1.84	4915		198_	67	325	246	<u> </u>	
	27.5	11	0,95	1.90'	4974	Life Production	90	CG.	35	543	5	
	<u> </u>	12 (0.03	1.66	495.5	and the second	98	6C	1271°	346	3	
	300	B1	0.93	1.86	497.0	10000 V	95	23	270	250	Č	
	26	2	R.GU	1.20	499.2		64	6.2	571	246		
	35	3	h.g.V	19%	GAL A		40	P.G.	272	No.	Z	
	un	4	1 os	SIA	SAZ U		105	60	2-7	ALCA	Card and a second secon	
	UX/	5	N.00	5 AA	CAL.		ant	97	200	5/1	<u>_</u>	
	UC I	6	1 00	R XX	Cont		10-	$\frac{6}{2}$	3.00	RZ-		
	18r	7	A 9	any and			14-	87	228	<u>d-20</u>	20	
	- MAD	0 0	ν_{11}	1. X d	204.7		17	46	5-18-	247		
	-20-	0	0.40-	⊥•¥Q-	2116			47	326	342	<u> </u>	
	-225	9	0.94	1.88	513.6		47	64	314	Æð_	5	
	-55-	10	0.93	LS G	SS 6		97	64	373	<u>250</u>	5	
	575	11	Digg	176	$50, \dot{7}$		197	65	374.	2SI		
L	68	12	DÃI	Julas	519.3		97	66	370	DYg	5	
General:		C)perato	rs:	Conditi	ions:	Mo	oisture	Gross	Tare	Net	
Box No	:MBL	В	ox :	_CP_	Ambient	Temp:		Data:	764		ml	
Delta H@): 1.66	Pr	obe: M	D	Pbar	:	297	8	. I cm		ml	
Gamma Y	7:1.017	1 CE	EMS: B	A	Static P	:	~ G/	(marile and the second s	164	ļļ		
								7	16		mi	
									245 8		g	
								6 10	<u>20 ve</u>	ř		
								02	COL CO			
<u>j</u> ła							6.	46	13.5	5 .0	.5	
							6.	63	13.1	o Fo	. 3	
¢.	M Envices	300 OIG C	Loiony Road	u, Suite 1, N	vorton, MA (12/60	6.1	06	13.2	∠o.	- Y	
							. i	and the second sec	÷: 8 j	18 1	Ś	
							8.6 2 12.00				- <u>- K</u>	

METHOD 5 SAMPLING DATA SHEET

Facilit	y: Pinetree Fitchburg
Date	: 6/26/13
Run	:3

Unit : Stack

Run Time : 120

Page of

Filter No. : Nozzle No.:

Leak Test Data

			Initial I	Rate:		Final Rate:						
		Pro	obe: <u>Ø.0</u>	615		Probe:0.068 "Hg						
		Pit	tots: Ø	<u>a Z</u>		Pitots: <u>Ø a z</u> "H ₂ O						
	Initial M	eter Rea	uding: 🚄	20.7	705	Final	Meter Ro	eading:	SGR.	LCU		
	Time	Trav.	Delta	Delta	Meter	DGM	DGM	Imp	Stack	' Hot	Pump	
	Hr Min	Point	P	H	Vol.	ĪŅ	Out	Temp	Temp	Temp	Vac	
	2.5	A1	092	1.84	2978	N/A	125	62	37	230	4	
	5	2	0.95	<u>(.q₀)</u>	524.7	<u> </u>	796	Tola	373	235	<u>s'</u>	
	2.5	3	0.98	1.96	526/		95	Ğζ	327	240		
	16	4	<u> 20.0</u>	1.96	536.2		90'	64	282	346	Z	
	125	5	r o's	<u>1,86</u>	530.L		90	GG	283	250	5	
	15	6	0.94	1.8¢	53.6		099	64	225	251	<	
	176	7	0.00	Nã	634.6		90	63	30/	<u>294</u>	4	
	20	8	h. EU	1.76	6363		100	àú	200	350	Ů.	
	225	9 -	Qãž	1.86	638:4		100	GŚ	30ú	35ĩ	$\boldsymbol{\varsigma}$	
	- 25	10	<u>AP,0</u>	<u>1.\$0</u>	\$40.9		99	CÍ	2,64	290	$\left \right\rangle$	
	275	11	O QU	1.68	5423	a provide the second seco	9ġ	67	382'	351	3	
	50	12	G TO	<u>ran</u>	544.1		99	Co Co	376	250	4	
	Sas	B1	0.97	1.94	SUS.S		90	64	203	252	5	
	35	2	<u>ŏ.Gi</u>	1.94	547.9		ġġ	24	388	j20	5	
	375	3	0.95	1.90	(suig. a	Second Statement	99	64	žíz.	344	5	
	99	4	1.001	2.00	Scia		90	čS	202	SÁ3	$ \zeta $	
	425	5	105	2.10	SSZQI		gai	ČĆ.	2ia	151	Ê	
	45	6	NOS	<u>n ið</u>	5561		99	15	zčo	SYC	C	
	455	7	1:00 1	100	6482		93	ČŜ.	2/2	251	Ś	
	50	8	1.05	3.ĨŎ	Zaiz	or Manual States	97	63.	site i	Хĩ	Ś	
	55	9	N OS	2.00	562,5		97	63	SUC.	Xcz_	5	
	ŚŚ	10	0.96	1.96	564.5	r	97	64	360		Ś	
	575	11	0.92	1.94	Sec. S		97	65	367	593	5	
	60	12	0.22	1.64	568.4		97	60	ZLŚ	35	Ч	
Gener	al:	С)perator	'S:	Conditi	ions:	\ Mo	oisture	Gross	Tare	Net	
Box N	o :MBL	В	ox :	_CP_	Ambient	Temp:		Data:	278		ml	
Delta	H@: 1.66	Pr	obe:_Ml	D	Pbar	د •_			. & m.		ml	
Gamm	na Y: 1.017	1 CE	EMS: BA	4	Static P	•	-069		102		ml	
									13			
									565.	8	g	
										ð -		
							0 -	- 10.	L	00		
	BEX						5.6	6 14	62	° 0'7-		
	CERVICES	360 Old C	Colony Road	i, Suite 1, N	Norton, MA ()2766	5.7	1 14	,54	0.0		
							AA 88.51 24E					
							1.0 L 1 U	× 1.	803	80.0	nananananan katalan kat	

1997 - 1998) 1997 - 1998)				·										
			\mathbb{N}	1ETH	OD 20)1A/2()2 SAI	MPLI	NG D	ATA	SHEE	T		
	Faci	lity: _	Pinetre	e Fitchb	urg_	Page	Page <u></u> of' Unit :Stack							
	Date	è:	6/2	-6/1-	3			Ru	n Time :	133	<u>à-1</u>	536		
PLC.C	Run	:	، 			-		Filt	er No.			·····		
1 of Coet	~					Leak	Test Da	INO ata	zzie ino.	•				
1. + +				Initial	Rate:	TACCUR	T COL TE	4682	Final I	Rate:				
			Pro	obe: <u>0,</u>	2615	"Hg		Probe:	0.06	<u>7</u> "Hg		·***		
	r		Pit	tots: 🤌	42	"H ₂ O		Pitots:	de 3	<u>"H</u> 2	0	:		
	Init	ial Me	eter Rea	uding:	568	700	Final	Meter Re	eading:	607.7	20			
	Ti	ime	Trav.	Delta	Delta	Meter	DGM	CPM	Imp	Stack	Hot	Pump		
.0	Hr	Min	Point	P	H	Vol.	Temp	Temp	Temp	Temp	Temp	Vac		
	10	15		110	0.34	672.0	16	85	66	-371	JH	\rightarrow		
	30	45	2	hils.	6.54	<u>675. S</u>	9.6	84	65	370	246	R-		
	4	15	3	1.19	0.34	571.0	94	<u> </u>	194	374	550-	2		
	4	00	4	1:00	10.34	669.9	138	45	62	342	344	<u>-</u> 2		
	20-	45	<u> </u>	H-00-	0.5	Els y	42	<u> </u>	<u>61</u>	57,	246	3		
1	\$ 0-	QQ-	0 D1	0.90	0.34	298:3	99	80-	61-	374	518	<u>_</u>		
, and the second second	09	45	<u>B1</u>	100	034	ZYL-S	- 24		64	574	32-	2		
	00	60	2	1.10	0:59	274.2	6-78	-20-	<u><u> </u></u>	515	\underline{PS}	3		
	50	SQ-	3	17.56	0.5	211.0	17	80	65	212	$\left \frac{\partial S}{\partial I}\right $	200		
	40	75	4	hơ đ	0.54		$\frac{1}{3}$	X.J	65	367	ade	\rightarrow		
site a	$\frac{70}{20}$	12Q	5	1.00	0.54	puy 1	Laix-	XS.	66	565	495-	-3		
6	00	60	0	622	NO4	fal/	1-18-	84	6-1-	564	1246			
				<u> </u>							<u> </u>			
					<u> </u>	<u> </u>								
						<u> </u>	<u> </u>	<u> </u>		······				
				<u> </u>		<u> </u>			<u> </u>		<u> </u>			
								· · · · ·						
					<u> </u>									
Gener	ral:	L]	()perato	rs:	Condit	ions:	IM	oisture	Gross	Tara	Net		
Box N	lo :N	MB L	B	ox : C	P .	Ambient	Temp:	TAR	Data:			ml		
Delta	Delta H@:_166 Probe:MD I						·r·;		_	101	\vdash	ml		
Gamm	Gamma Y:_1.0170 CEMS:_BA Sta						P -	:-0.6	8			ml		
							0.		5	113	100			
			0	ere and a second	- w ord				allas -	5651	2550	g		
	_	2-2	57	50.1	13.0 l	0.0	\mathcal{F}_{ϵ}		Ż.	Co	der e	<u> </u>		
	18	A Da	-						02	102	CC	- Ause		
	Garage		360 Old (Colony Roa	d. Suite 1	Norton MA	02766		.1 ~~	1287	50 2	>		
	1999,999,999 1999,990 1990,990 1990,990 1990,990 1990,990 1990,9000 1990,9000 1000,900,900 1000,9000 1000,9000 10000000000		500 Olu (Loiony AUd	y, June 1, I	tor congrine	02700	4:4036 2 ⁰¹	9.20	15.4	5 0.	3		
						¢	0.76	13.45 0.6						

METHOD 201A/202 SAMPLING DATA SHEET

Facility: _Pinetree Fitchburg_										
Date	•	6/27/13								
Run	:	2								

Unit : <u>Stack</u>

Run Time : 0820-1024

Filter No. :_____ Nozzle No.:_____

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Leak Test Data													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Initial Rate: Final Rate:												
Pitots: \mathcal{U}_{42} "H ₂ O Pitots: \mathcal{U}_{42} "H ₂ O Initial Meter Reading: \mathcal{C} \mathcal{C} \mathcal{O} \mathcal{O} Final Meter Reading: \mathcal{C} \mathcal{U} \mathcal{T}				Pro	be: J. C	615	Probe: <u>6.06. 2</u> "Hg							
Initial Meter Reading: $(\bigcirc 0 \bigcirc $				Pit	ots: De	45	"H ₂ O		Pitots: 20 "H ₂ O					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Init	ial Me	eter Rea	ding: (. OQ. 4	Final I	Final Meter Reading: 647 79						
Hr Min Point P H Vol. Temp Te		T	ime	Trav.	Delta	Delta	Meter	DGM	CPM	Imp	Stack	Hot	Pump	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Hr Min Point P				H "	Vol.	Temp	Temp	Temp	Temp	Temp	Vac	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	21	A1	10	<u>a II</u>	608U	191	68	65	255	26	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2a	45	2	11G	0.24	64.8	95	6	62	BIC	251	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ŽI.	(S)	3	<u>Cis</u>	0.34	(15.	<u>Ĝ</u> Q	Lč5	63	369	248	\rightarrow	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ίí.	00	4	1.00	0.34	Lig C	101	1 <u>Ca</u>	24	370	247	3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sd	45	5	<u> 30.1</u>	0.34	كاندغ	102	50'	64	370	249	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- and the second	66	30	6	1.00	0.34	625.0	104	172	64	366	256	3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	ιŏ	00	<u>B1</u>	$DS\overline{\zeta}$	0,34	626.2	102	123	62	365	251	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19	30	2	0.95	0.34	1313	168	La	1	260	251	3	
40 4 5 63 6777 16 66 66 246 44 50 36 5 10 76 64 117 71 66 365 246 44 20 ac 6 76 641 117 71 66 365 246 44 ac ac 642 74 117 71 66 365 746 446 44 ac <td>ľ.</td> <td>29</td> <td>45</td> <td>3</td> <td>1.10</td> <td>0.34</td> <td>6344</td> <td>10g</td> <td>69</td> <td>26</td> <td>366</td> <td>DSA.</td> <td>4</td>	ľ.	29	45	3	1.10	0.34	6344	10g	69	26	366	DSA.	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 produced in	40	LLS	4	15	0.35	6377	<u>İlo</u>	La	69	365	ZS K	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ĺ	50	30	5	510	0.26	6411	10	21	66	365	248	<u> </u>	
General: Operators: Conditions: Moisture Box No :MB1 Box : CP Ambient Temp: Data: Delta H@: 166 Probe: _MD Pbar :P1.80 ml 0 ml 0 ml 0 Ml 34.8 34.5	À	00	00	6	195	0.36	6446	113	\Box	60	362	JYg	4	
General: Operators: Conditions: Moisture Box No<:MBL	6.J ²					C 2 60	6422	· · · ·	í ch	~ ~				
General: Operators: Conditions: Moisture Box No<:MB1Box : CP												<u></u>		
General: Operators: Conditions: Moisture Box No :MB1 Box : CP Ambient Temp: Data: Delta H@:_166 Probe:MD Pbar : 91.80 0 mil 0 mil 0 mil 0 mil 02 (02 (0 539.9 5										ļ		<u> </u>		
General: Operators: Conditions: Moisture Box No :MB1_ Box : CP Ambient Temp: Data: Delta H@: 166 Probe: MD Pbar 39.80 0 ml 0 ml 0 ml 02 02 03									ļ		<u> </u>	<u> </u>		
General: Operators: Conditions: Moisture Box No :MB1 Box : CP Ambient Temp: Data: Delta H@: 166 Probe: MD Pbar :91.80 Gamma Y: 1.0170 CEMS: BA Static P : 0 ml														
General: Operators: Conditions: Moisture Box No<:MB1_														
General: Operators: Conditions: Moisture Box No :MB1 Box : _CP Ambient Temp: Data: Delta H@: 166 Probe: _MD Pbar 29.80 0 mil 0 mil 0 mil 0 0 0 0 0										ļ				
General:Operators:Conditions:MoistureBox No :MB1_Box : CPAmbient Temp:Data:Delta H@: 166Probe:MDPbarGamma Y: 1.0170CEMS:BAStatic P: -0.72 Oml 0_2 (0_2 <							ļ					ļ		
General: Operators: Conditions: Moisture Box No :MB1_ Box : CP Ambient Temp: Data: $\boxed{\text{Gross} Tare } \text{Net} \\ 194 & \text{ml} \\ 0 & $									ļ		ļ	L		
General:Operators:Conditions:MoistureBox No :MB1Box :_CPAmbient Temp:Data:Delta H@:_166Probe:_MDPbarGamma Y:_1.0170CEMS:_BAStatic P \bigcirc_2 (\bigcirc_2 (\bigcirc_2 \bigcirc_2 (\bigcirc_2 <td></td> <td><u> </u></td> <td><u> </u></td> <td></td>											<u> </u>	<u> </u>		
General:Operators:Conditions:MoistureBox No :MB1Box : CPAmbient Temp:Data:Delta H@: 166Probe:MDPbar 39.80 Gamma Y: 1.0170CEMS: BAStatic P 0 MB1MB2MB2MB2Delta H@: 166Probe:MDPbar 39.80 Gamma Y: 1.0170CEMS: BAStatic P 0 MB2MB3MB2MB2MB2MB3MB2MB2MB3MB3MB2MB2MB3MB3MB2MB3					L				ļ			ļ		
General:Operators:Conditions:MoistureBox No :MB1Box :_CPAmbient Temp:Data:Delta H@:_166Probe:_MDPbar 29.80 Gamma Y:_1.0170CEMS:_BAStatic POCOCoOCoCoOCoCoOCoCoOCoCoOCoCoOCoCoOCoCoOCoCoOCoCoOCoCo_OCoCo_OCoCo_OCoCo_OCo_Co_Co_Co_Co_			1	L			L		<u> </u>		<u> </u>			
Box No:MB1_Box:_CPAmbient Temp:Data:Delta H@:166Probe:MDPbar $\mathcal{P}9.80$ Gamma Y:1.0170CEMS:BAStatic P $\mathcal{P}2.80$ \mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2 $\mathcal{M}1$ \mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2 $\mathcal{M}1$ \mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2 $\mathcal{M}1$ \mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2 \mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2 \mathcal{O}_2 (\mathcal{O}_2 (\mathcal{O}_2	General: Operators: Conditions: Moisture Gross Tare										Net			
Delta H(a): 166Probe: MDPbar \Im 4.800mlGamma Y: 1.0170CEMS: BAStatic P \Box 4.80 \Box 1.0170 \Box 1.0170 \Box 1.0170 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \square 1.0170 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \square \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \square \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \square \bigcirc \square \bigcirc	Box N	10 :	MBL	B	ox :_C	P .	Ambient	Temp:_	- 10 2 ⁵⁰ -	Data:	194		mi	
Gamma Y:_1.0170_ CEMS:_BA_ Static P 1272 102 ml 02 (02 (0 539.9 g 03 (02 (0 539.9 g	Delta	H@:_	_166	P	robe:	MD_	Pbar	۳. با	24.XQ		0		ml	
02 (02 (0 539.9 5	Gamn	na Y:	_1.017	/0_ (CEMS:_	BA	Static	Ч	:-072	•	102		ml	
SARI AUC						0-	(0,	Ċe	0		539.9	2	g	
		48	·			AUR	121	٢						

NOTES 360 Old Colony Road, Suite 1, Norton, MA 02766
METHOD 201A/202 SAMPLING DATA SHEET

		±,.		• - •	Page	of \			ŭ.	1	
	Facility:	Pinetree	e Fitchbu	urg_	0	<u> </u>	Uni	t :	Sta	ck	
	Date : $6/27/13$				Run Time : 1050 - 1252					52	
	Run :_		2				Filt	er No.	•		
					Leak	Test Da	ita	ZZIC INU.	e		
			Initial 1	Rate:				Final I	Rate:		
		Pro	obe:	1615	"Hg		Probe:	<u>0.06</u>	<u> </u>	r S	
	f	Pit	ots: 🥑	<u>ęz</u>	"H ₂ O	· · · · · · · · · · · · · · · · · · ·	Pitots:	<u>943</u>	<u>"H</u>	20	1
	Initial M	eter Rea	iding:	44,6	00	Final]	Meter Ro	éading:	687.0	<u>650</u>	D
	Time	Trav.	Delta	Delta	Meter	DGM	CPM	Imp	Stack	Hot	Pump
	Hr Min	Point	P R G C	H	<u>V 01.</u>	1 emp	1 emp	Temp	$\frac{1 \text{ emp}}{2/6}$	1 emp	vac
	19 15	A1		4.55	651.1	112	18	<u></u>	760	54	2
	13130	3	1.05	erss	12 - C	++++++++++++++++++++++++++++++++++++	1-13-	62	370	5th	3
	12130	4	HT S	0.32	C/ru		132	185	32	545	2
dr.	SONS	5	NNA	0.2	1.4.8	15	75	125	270	249	2
	2945	6	643	624	667.9	112	34	115	368	1352	3
~	NGNG	B1 (ras	ñ.z6	671.0	12	64	83	34	548	3
	BG145	2	102	0.26	6743	NI	36	42	352	249	13
7	5944	3	LIS_	0.36	177.8	<u>Yi4</u>	75	GI	358	240	5
	4015	4	1.15	0.36	681.2	<u>lis</u>	29	-6è	1356	30	5
	5200	5	1.00	0.36	684.5	117	24	GI	395	248	5
V	159150	6	0.95	0.36	687.4	$ ^{r}$	173-	65	554	677	
			+								
								-			
		1	1		1						1
		<u> </u>						<u> </u>	ļ	<u> </u>	
											<u> </u>
				ļ							
C) .)		Condit		<u>]</u>		L	<u> </u>	
Gene:	ral: Jo ·MP7	ן ם	perato	rs: P	Ambient	IUIIS: Temn	I ¥1	luisture Nata•	Gross	Tare	Net ml
Delta	$H_{0}: 1.66$	<u>р</u>	robe:	MD	Phar	. Tomb'		x = 64 4 62 0	177		ml
Gamr	na Y: 1.01	70 0	CEMS:	BA	Static	P ·	:-07)	4	0	ml
							- <u>- 2</u> -	102	108	100	
							7.9	1 122	1581.9	550	g

<u>``</u>,

CYCLONIC FLOW TRAVERSE DATA

PITOT LEAK-TEST DATA

MB2 1,26 1,0171

INITIAL RAT PITOTS:	ГЕ <u>\$43</u>		FINAL RATE PITOTS:	øa 3
TRAVERSE POINT	VELOCITY HEAD	ROTATION ANGLE	STACK TEMP F	
11	0.26	06	376	
	0.38	00	328	
3	0.42	20/14	338	
<u> </u>	0.43	90/6	320	
5	0.40	1020	3 25	
6	0.46	2°CW	332	
7	0.41	00	324	
8	637	6°	322	
9	0.35	ß°	320	
0	0.35	1 car	330	
11	0.33	10,000	329	
12	6.24	1°°	372	

360 Old Colony Road, Suite 1, Norton, MA 02766

T. Wheeler Massorep uprofis

CYCLONIC FLOW TRAVERSE DATA

FACILITY:	Puetre - Fitchburg	DATE:	6-25-13
UNIT#:		RUN TIME:	1315
RUN#:	ć	STATIC P:	-0.47

PITOT LEAK-TEST DATA

INITIAL RATE PITOTS: <u>Øg</u> <u>3</u>

FINAL RATE PITOTS:

2

TRAVERSE	VELOCITY	ROTATION	STACK
POINT	HEAD	ANGLE	TEMP F
BI	0.32	20	224
	0.40	<u> </u>	329
2	0.26	O	334
24	0.36	- Gerw	334
5	A39	6100	375
6	0.44	Taw	335
<u> </u>	0.38	10/w	335
Û	0.35	je w	334
9	0.35	Prw	334
10	0.36	2°w	330
11	0.32	0	328
17	027	60	321

360 Old Colony Road, Suite 1, Norton, MA 02766

T. Wheelow Mass JEP c/22/13

Appendix L

150 9001:2008 Linde SPECTRA Environmental Gases, 80 Industrial Drive, Alpna, NJ 08865 ia la la carda da sua **CEM Services** PAGE: 1 of 1 SHIPPED TO: 360 Old Colony Rd Ste 1 Norton, MA 02766 **CERTIFICATE OF ANALYSIS** Cylinder Size: 2A (8" X 47.5") Sales#: 110374941 Cylinder #: CC-118864 1257682 Production#: Cylinder Pressure: 2000 psig **Certification Date:** May-24-2013 Cylinder Valve: CGA 580 / Brass P.O.#: 050813KM Cylinder Volume: 29.5 Liter Blend Type: ZERO NITROGEN Cylinder Material: Aluminum Material#: 24086370 Gas Volume: 4000 Liter Do NOT use under: 150 psig **REQUESTED GAS** GRADE COMPONENT 99.998 % NITROGEN

THC < 0.2 ppm

ANALYST: Justin Kutz

May-24-2013

DATE:

CERTIFICATE OF ANALYSIS

EPA PROTOCOL MIXTURE

PGVP ID#:	I12013	
CUSTOMER:	Cem Services	
SALES#:	110374941	
PROD#:	1257673	
P.O.# :	050813KM	
MATERIAL#:	24086339	
CERTIFICATION DATE:	28-May-2013	
EXPIRATION DATE:	29-May-2021	
(Using the May 2012 Revision	on of the EPA Protoc	ol)
CERTIFICATION HISTORY		·
		1

PROCEDURE # : G1
GAS CODE: OC2
CYLINDER #: CC-110145
CYLINDER PRES: 2000 PSIG
CYLINDER VALVE: CGA 590
CYLINDER SIZE: 2A
CYLINDER MATERIAL: Aluminum
GAS VOLUME: 4000 Liter
BLEND TOLERANCE: 5% Relative
PAGE: 1 of 1

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Dioxide	28-May-2013	9.91 %	9.91 %	+/- 1%
Oxygen	28-May-2013	11.45 %	11.45 %	+/- 1%

BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION				
Carbon Dioxide	NTRM-82745x	SG-9609736	19.98 %				
Oxygen	NTRM-82659Y	cc-237244	24.52 %				

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION
				DATE(S)
Carbon Dioxide	CAI-300	S03001	NDIR	10-May-2013
Oxvaen	CAI-300	S03001	PM	24-May-2013

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE 1997 EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 100 PSIG.

ANALYST:

DATE: _____28-May-2013

MATTHEW JACKSON

Linde Gas North America LLC

(908) 329-9700 Main (908) 329-9740 Fax www.Lindeus.com

CERTIFICATE OF ANALYSIS

I12012
CEM SERVICES
109475072
1231604
090612KM
24086339
18-Sep-2012
19-Sep-2020

EPA PROTOCOL MIXTURE

I NOOLDONG # .	
GAS CODE:	OC2
CYLINDER #:	CC-84988
CYLINDER PRES:	2000 PSIG
CYLINDER VALVE:	CGA 590
CYLINDER SIZE:	2A
CYLINDER MATERIAL:	Aluminum
GAS VOLUME:	4000 Liter
BLEND TOLERANCE:	5% Relative
PAGE:	1 of 1

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Dioxide	18-Sep-2012	19.85 %	19.85 %	+/- 1%
Oxygen	18-Sep-2012	22.8 %	22.8 %	+/- 1%

BALANCE

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Dioxide	NTRM-82745x	SG-9609736	19.98 %
Oxygen	NTRM-82659Y	cc-237244	24.52 %

Nitrogen

INSTRUMENTATION

ANALYST:_

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION
				DATE(S)
Carbon Dioxide	CAI-300	S03001	NDIR	31-Aug-2012
Oxygen	CAI-300	S03001	PM	31-Aug-2012
		· · · · · · · · · · · · · · · · · · ·		

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 100 PSIG.

DATE: 18-Sep-2012

MATTHEW JACKSON

CERTIFICATE OF ANALYSIS

EM SERVICES
09018301
218405
50912KM
4086346
1-May-2012
1-May-2015

EPA PROTOCOL MIXTURE PROCEDURE # · G1

TROOLDONL #.	
GAS CODE:	APPVD
CYLINDER #:	CC-134734
CYLINDER PRES:	2000 PSIG
CYLINDER VALVE:	CGA 590
CYLINDER SIZE:	2A
CYLINDER MATERIAL:	Aluminum
GAS VOLUME:	4000 Liter
BLEND TOLERANCE:	5% Relative
PAGE:	1 of 1

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Methane	31-May-2012	29.6 ppm	29.6 ppm	+/- 1%
· · · · · · · · · · · · · · · · · · ·				
BALANCE	Air			

BALANCE

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Methane	GMIS-1	cc-128487	101.1 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION
				DATE(S)
Methane	Horiba VIA-510	57141706	NDIR	08-May-2012

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:_

MATTHEW JACKSON

Linde Gas North America LLC

(908) 329-9700 Main (908) 329-9740 Fax www.Lindeus.com

CERTIFICATE OF ANALYSIS

I12011
CEM Services
108412285
1192620
090811KM
24086346
28-Sep-2011
28-Sep-2014

EPA PROTOCOL MIXTURE

PROCEDURE # :	G1
GAS CODE:	APPVD
CYLINDER #:	SG-9153990
CYLINDER PRES:	2000 PSIG
CYLINDER VALVE:	CGA 590
CYLINDER SIZE:	2A
CYLINDER MATERIAL:	Aluminum
GAS VOLUME:	4000 Liter
BLEND TOLERANCE:	5% Relative
PAGE:	1 of 1

CERTIFICATION HISTORY

· · · · · · · · · · · · · · · · · · ·	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Methane	28-Sep-2011	55.2 ppm	55.2 ppm	+/- 1%
BALANCE	Air			

BALANCE

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Methane	GMIS-1	cc-53279	99.2 ppm

INSTRUMENTATION

ANALYST:

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION
				DATE(S)
Methane	Horiba VIA- 510	57141706	NDIR	15-Sep-2011

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

MATTHEW JACKSON

DATE: 28-Sep-2011

EPA PROTOCOL MIXTURE

CYLINDER PRES: 2000 PSIG

CC-20164

590

PROCEDURE #: G1

CYLINDER #:

CGA OUTLET:

CERTIFICATE OF ANALYSIS

 CUSTOMER:
 CEM SERVICES

 SALES#:
 PROD#:
 1157043

 P.O.# :
 100610KM

CERTIFICATION DATE: 10/27/2010 **EXPIRATION DATE:** 10/27/2013

CERTIFICATION HISTORY

DATE OF
COMPONENTDATE OF
ASSAYMEAN
CONCENTRATIONCERTIFIED
CONCENTRATIONANALYTICAL
ACCURACYMethane10/27/201091.3 ppm91.3 ppm+/- 1%Image: Concentration of the state of the sta

BALANCE

Air

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Methane	GMIS-1	CC-53279	99.2 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION
				DATE(S)
Methane	H. Packard 6890	US00001434	GC - FID	10/4/2010

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

FRED PIKULA

ISO 9001:2008	Linde SPECTRA	Environmental G	ases, 80 Industrial Drive	, Alpha, NJ 08865
THE UNDE GROUP			C	Ante
SHIPPED TO:	CEM Services 360 Old Colony Rd Ste 1 Norton, MA 02766		PAGE:	1 of 1
	CERTIFIC	ATE OF ANAL	YSIS	Announ William A aith ann am an an an ann an ann an ann an ann an
Sales#: Production#: Certification Date: P.O.# : Blend Type: Material#:	110068834 1248766 Feb-28-2013 VERBAL-LINDEN COGEN UHP HYDROGEN 24087959		Cylinder Size: Cylinder # : Cylinder Pressure: Cylinder Valve: Cylinder Volume: Cylinder Material: Gas Volume:	2A (8" X 47.5") XC-000295B 2000 psig CGA 350 / Brass 29.5 Liter Aluminum 4000 Liter
Do NOT use under:	150 psig			
COMPONENT	REG	UESTED GAS GRADE		
HYDROGEN		99.999 %		
$\begin{array}{c} Ar\\ CO_2\\ CO\\ N_2\\ O_2\\ THC\\ H_2O\end{array}$	\leq 1.0 ppm \leq 1.0 ppm \leq 1.0 ppm \leq 3.0 ppm \leq 2.0 ppm \leq 1.0 ppm \leq 3.0 ppm	·		
ANALYST:Matthe	ew Jackson		DATE:	Feb-28-2013

ISO 9001:2008	Linde SPECTF	RA Environmental Ga	ses, 80 industrial Drive, Ai	pna, 140 00000
THE LINDE GROUP			e e	Gnite
SHIPPED TO:	CEM Services 360 old Colony Rd Ste1 Norton, MA 02766		PAGE:	1 of 1
	CERTIFI	CATE OF ANAL	YSIS	
Sales#: Production#: Certification Date: P.O.# : Blend Type: Material#:	110374941 1257686 May-28-2013 050813KM VOC ZERO AIR 24088830		Cylinder Size: 2/ Cylinder # : C Cylinder Pressure: 20 Cylinder Valve: C Cylinder Volume: 2 Cylinder Material: A Gas Volume: 4	A (8" X 47.5") C-133731 D00 psig GA 590 / Brass 9.5 Liter luminum 000 Liter
Do NOT use under:	150 psig		×	
	F	REQUESTED GAS		
COMPONENT		GRADE		
AIR		VOC ZERO		
$egin{array}{c} O_2 \ CO \ CO_2 \ H_2O \ THC \end{array}$	Between 20 and 21% ≤ 0.05ppm ≤ 0.3 ppm ≤ 1.0 ppm ≤ 0.05 ppm			
ANALYST:M	atthew Jackson		DATE:	May-28-2013

(908) 329-9700 Main (908) 329-9740 Fax www.Lindeus.com

Appendix M

LOG REQUESTED

gitest.	ms.	ø
---------	-----	---

PERFORMANCE

FI-03019 TI-03013	PINETREE STEAM FLOW MAIN STEAM TEMP	POWER-I 136.52 948	FITCHBUR KPPH DEGF	G PERFORMAN AMBIENT	NCE LOG" OUTSIDE AIR TEM	P 77	DEGF
PI-03016	MAIN STEAM PRESS	1244	PSIG	TI-02004 TI-02039	FD OUT AIR HTR I AH AIR OUT TEMP	IN 87 442	DEGF
FI-05012 TI-03007 TIC-03010 FI-10012 TI-03A05 PI-05022 LI-05018 PI-05013 FI-05011 TI-05051 TI-05023 PI-06012	ATTEMP SPRAY FLOW ATTEMP INLET TEMP ATTEMP OUT TEMP BLOWDOWN FLOW DRUM TEMP DRUM PRESSURE DRUM LEVEL FEEDWATER PRESS FEEDWATER FLOW BFP SUCTION TEMP FW TEMP ECON IN DEAERATOR PRESS	15.48 953 725 0.4 583 1287 0.2 1341 129.23 304 405 55.9	KLB/H DEGF DEGF KLB/H DEGF PSIG KLB/H DEGF DEGF PSIG	TI-02035 TI-02036 TI-02042 TI-02B51 TI-02C51 PDI-02A51 JI-03020 JI-03022 CALC JIC-03020 JI-03022 JQI-03024	ECON GAS IN AH GAS IN TEMP AH GAS OUT TEMP BH INLET TEMP BH OUTLET TEMP BH DIFF PRESS GENERATOR GROSS STATION SERVICE STATION NET PWR GROSS MW PROD STA.SERVICE NET MHR PROD	723 545 305 434 422 5.2 16.4 2.5 13.9 7704.04 13.35 9080.69	DEGF DEGF DEGF DEGF "H2O MW MW MW MW MW MW MW MW HRS MWHRS
TI-06006 TI-09001 TI-09023 TI-09024 TI-09021 PI-09004 LI-09030 PIC-02020 PIC-02003 PIC-02003 FI-02001	COND DISCH TEMP COND RCVR TEMP COND LEG A COND LEG B EXHAUST TEMP TURBINE EXH PRESS DEMIN TANK LEVEL ID FAN INLET FURNACE PRESSURE FD FAN INLET FD DUCT PRESSURE FD AIR FLOW	135 138 73.7 73.7 105 4.20 89.0 94 -0.19 54 13.2 210.69	DEGF DEGF DEGF "HGA "LVL %OPEN "H2O %OPEN "WC KLB/H	FI-30170 DB-00106 DB-00109 AI-02030 DB-00108 DB-00107 DB-00105 S02 UREA FLOW % CH4 FLOW CH4 LFG METER LFG METER	FIRING RATE CEM NH3 STACK OPACITY BOILER EXIT O2 CEM FLUE GAS O2 CEM CO CEM NOX CEM SO2 RATE % % METHANE LFG GAS FLOW LFG MASS FLOW LFG HEAT FLOW	49.0 3.8 1.2 2.8 5.5 183 21 0 0.0 -0.15 -750.9 965.9 6007.3	PCNT PPM % %O2 %O2 PPM PPM % CFM MSCF MMBTU
FI-02001B FIC-020010 PI-02007 FI-02007 FI-14003	UGA FLOW(CALC) COFA FAN INLET OFA DISCHG PRESS OVERFIRE AIR FLOW GAS BURNER FLOW	152.60 47 -12 57.96 5.0	KLB/H %OPEN "WC KLB/H KLB/H	LFG SUC WT-1000 WT-2000 DDU1 SPEED DDU2 SPEED DDU2	LFG SUCTION BLR WOOD FEED WOOD RETURN DDU1 START STOP PAPER FEED 1 DDU2 START STOP PAPER FEED 2	-0.34 8630.2 3005.2 STOP 0.0 STOP 0.0	"H2O TONS TONS

LOG : 26-JUN-13 09:35:31 LCP-47

LOG REQUESTED

PERFORMANCE

"PINETREE POWER-FITCHBURG PERFORMANCE LOG"

FI-03019	STEAM FLOW	140.18	КРРН	AMBIENT	OUTSIDE AIR TEM	P 80	DEGF
TI-03013	MAIN STEAM TEMP	959	DEGF				
PI-03016	MAIN STEAM PRESS	1255	PSIG	TI-02004	FD OUT AIR HTR	in 90	DEGF
				ті-02039	AH AIR OUT TEMP	439	DEGF
FI-05012	ATTEMP SPRAY FLOW	v 15.48	KLB/H	TI-02035	ECON GAS IN	725	DEGF
TI-03007	ATTEMP INLET TEMP	P 935	DEGF	TI-02036	AH GAS IN TEMP	548	DEGF
TIG-03010	ATTEMP OUT TEMP	739	DEGF	TI-02042	AH GAS OUT TEMP	303	DEGF
FI-10012	BLOWDOWN FLOW	0.3	KLB/H	TI-02B51	BH INLET TEMP	435	DEGF
TI-03A05	DRUM TEMP	584	DEGF	TI-02C51	BH OUTLET TEMP	424	DEGF
PI-05022	DRUM PRESSURE	1303	PSIG	PDI-02A51	BH DIFF PRESS	5.1	"н2о
LI-05018	DRUM LEVEL	-0.9	"NWL	JI-03020	GENERATOR GROSS	16.7	MW
PI-05013	FEEDWATER PRESS	1366	PSIG	JI-03022	STATION SERVICE	2.6	MW
FI-05011	FEEDWATER FLOW	150.17	KLB/H	CALC	STATION NET PWR	14.2	MW
TI-05051	BFP SUCTION TEMP	306	DEGF	JIC-03020	GROSS MW PROD	7722.36	MWHRS
TI-05023	FW TEMP ECON IN	407	DEGF	JI-03022	STA.SERVICE	16.31	MWHRS
PI-06012	DEAERATOR PRESS	57.9	PSIG	JQI-03024	NET MHR PROD	9082.95	MWHRS
TT-06006	COND DISCH TEMP	140	DECE	ET30170	ETDINC DATE	52 A	DONT
TT-09001	COND BEVE TEMP	140			CEM NUR	22.0	
17 0000T	CORD REAR TEMP	.L.≁Z	DLGF	DD-00100		0 ª C	FFM

Page 1

	70 7	Un	titled		4 7	0/
TI-09023 COND LEG A TI-09024 COND LEG B TI-09021 EXHAUST TEMP PI-09004 TURBINE EXH PRES LI-09030 DEMIN TANK LEVEL	73.7 73.7 105 s 4.69 82.9	DEGF DEGF "HGA "LVL	DB-00109 AI-02030 DB-00108 DB-00107 DB-00105 S02	STACK OPACITY BOILER EXIT O2 CEM FLUE GAS O2 CEM CO CEM NOX CEM SO2	1,2 3,3 5,3 151 22 -0	% %02 %02 PPM PPM PPM
PIC-02020 ID FAN INLET PI-02020 FURNACE PRESSURE PIC-02003 FD FAN INLET PIC-02003 FD DUCT PRESSURE FI-02001 FD AIR FLOW	96 -0.16 56 13.4 220.82	%OPEN "H2O %OPEN "WC KLB/H	UREA FLOW % CH4 FLOW CH4 LFG METER LFG METER	RATE % % METHANE LFG GAS FLOW LFG MASS FLOW LFG HEAT FLOW LEG SUCTION	$\begin{array}{r} 0.0 \\ -0.15 \\ -750.9 \\ 965.9 \\ 6016.1 \\ -0.34 \end{array}$	% % CH4 CFM MSCF MMBTU "H20
FI-02001B UGA FLOW(CALC) FIC-02001COFA FAN INLET PI-02007 OFA DISCHG PRESS FI-02007 OVERETRE ATR FLO	156.97 53 -12 W 63.82	KLB/H %OPEN "WC KLB/H	WT-1000 WT-2000	BLR WOOD FEED WOOD RETURN	8669.9 3012.4	TONS
FI-14003 GAS BURNER FLOW	6.4	KLB/H	SPEED DDU DDU2 SPEED DDU2	1PAPER FEED 1 DDU2 START STOP 2PAPER FEED 2	0.0 STOP 0.0	
LOG : 26-JUN-13 09:55:03	LC	P-47	1.00			
	PERFORM	ANCE	201			
start more						
"PINETREE FI-03019 STEAM FLOW	POWER-1 140.53	FITCHBUR KPPH	G PERFORMAN AMBIENT	NCE LOG" OUTSIDE AIR TEMI	> 81	DEGF
TI-03013 MAIN STEAM TEMP PI-03016 MAIN STEAM PRESS	950 1257	DEGF PSIG	TI-02004	FD OUT AIR HTR	EN 91	DEGF
FI-05012 ATTEMP SPRAY FLO	W 15.47	KLB/H	TI-02039 TI-02035	AH AIR OUT TEMP ECON GAS IN	443 728 551	DEGF
TIC-03010 ATTEMP OUT TEMP FI-10012 BLOWDOWN FLOW	724	DEGF KLB/H	TI-02042	AH GAS IN TEMP AH GAS OUT TEMP BH TNIFT TEMP	307 438	DEGF
TI-03A05 DRUM TEMP PI-05022 DRUM PRESSURE	584 1304	DEGF PSIG	TI-02C51 PDI-02A51	BH OUTLET TEMP BH DIFF PRESS	426 4.7	DEGF "H2O
LI-05018 DRUM LEVEL PI-05013 FEEDWATER PRESS	0.4 1359	"NWL PSIG	JI-03020 JI-03022	GENERATOR GROSS STATION SERVICE	16.7 2.5	MW MW
FI-05011 FEEDWATER FLOW TI-05051 BFP SUCTION TEMP	132.16 306	KLB/H DEGF	CALC JIC-03020	STATION NET PWR GROSS MW PROD	14.2 7727.86	MW MWHRS
TI-05023 FW TEMP ECON IN PI-06012 DEAERATOR PRESS	408 57,2	DEGF PSIG	JI-03022 JQI-03024	STA.SERVICE NET MHR PROD	17.15 9083.70	MWHRS MWHRS
TI-06006 COND DISCH TEMP	143 144	DEGF	FI-30170 DB-00106	FIRING RATE	52.0	PCNT PPM
TI-09023 COND LEG A TI-09024 COND LEG B	73.7	DEGF DEGF	DB-00109 AI-02030	STACK OPACITY BOILER EXIT 02	1.2 2.9	% %02
TI-09021 EXHAUST TEMP PI-09004 TURBINE EXH PRES	105 s 4.82	DEGF "HGA	DB-00108 DB-00107	CEM FLUE GAS O2 CEM CO	4.9 224	%02 PPM
LI-09030 DEMIN TANK LEVEL	82.4	"LVL	DB-00105 SO2	CEM NOX CEM SO2	21 -0	PPM PPM
PIC-02020 ID FAN INLET PI-02020 FURNACE PRESSURE	96 -0.16	%OPEN "H2O	UREA FLOW % CH4	RATE % % METHANE	0.0 -0.15	% % CH4
PIC-02003 FD PAN INLET PIC-02003 FD DUCT PRESSURE FI-02001 FD AIR FLOW	13.2 221.47	%OPEN "WC KLB/H	LFG METER	LFG GAS FLOW LFG MASS FLOW LFG HEAT FLOW	-751.9 965.9 6018.5	MSCF MMBTU
FI-02001B UGA FLOW(CALC) FIC-02001COFA FAN INLET PT-02007 OFA DISCHG PRESS	158.04 54 -12	KLB/H %OPEN "WC	WT-1000 WT-2000	BLR WOOD FEED WOOD RETURN	8680.0 3012.8	TONS TONS
FI-02007 OVERFIRE AIR FLO FI-14003 GAS BURNER FLOW	w 63.65 5.0	KLB/H KLB/H	DDU1 SPEED DDU	DDU1 START STOP 1PAPER FEED 1	STOP	
	2.0		DDU2 SPEED DDU2	DDU2 START STOP 2PAPER FEED 2	STOP 0.0	

LOG : 26-JUN-13 10:57:22 LCP-47

LOG REQUESTED

PERFORMANCE

Untitled

	"PINETREE	POWER-F	TTCHBUR	F PERFORMAN	VCE LOG"		
FI-03019	STEAM FLOW	141.46	KPPH	AMBIENT	OUTSIDE AIR TEMP	P 80	DEGF
TI-03013	MAIN STEAM TEMP	951	DEGF				
PI-03016	MAIN STEAM PRESS	1255	PSIG	TI-02004	FD OUT AIR HTR]	EN 91	DEGF
05010				TI-02039	AH AIR OUT TEMP	448	DEGF
FI-05012	ATTEMP SPRAY FLOW	15.4/	KLB/H	TI-02035	ECON GAS IN	/30	DEGF
TT-03007	ATTEMP INLET TEMP	944 y	DEGE	TI-02036	AH GAS IN TEMP	555	DEGF
TIC-03010	RICHDOWN FLOW	/20			AH GAS OUT TEMP	309	DEGE
	BLUWDUWN FLUW	502	KLB/H	11-02B51	BH INLET TEMP	430	DEGE
11~05A05	DRUM DESSURE	1202			BH OUILEI IEMP	420 51	
PI-05022	DRUM PRESSURE	-0 1	PSIG ^H NIM	PD1-02A31	CENERATOR CROSS).⊥ 16 0	HZU Mu
PT-05013	EFEDWATER DRESS	1362		JI-03020	STATION SERVICE	2 6	I¥IVV NALs/
FT-05011	FEEDWATER FLOW	143 38	KIB\H		STATION SERVICE	14 3	Mial
TT = 05051	REP SUCTION TEMP	307	DEGE	1TC~03020	GROSS MW PROD	745 38	MWHRS
TI-05023	FW TEMP FOON TN	408	DEGE	1T-03022	STA SERVICE	19.84	MWHRS
PI-06012	DEAERATOR PRESS	58.3	PSIG	JOI-03024	NET MHR PROD	0086.00	MWHRS
TI-06006	COND DISCH TEMP	144	DEGF	FI-30170	FIRING RATE	52.0	PCNT
ті-09001	COND RCVR TEMP	145	DEGF	DB-00106	CEM NH3	0.5	PPM
TI-09023	COND LEG A	73.7	DEGF	DB-00109	STACK OPACITY	0.9	%
TI-09024	COND LEG B	73.7	DEGF	AI-02030	BOILER EXIT 02	3.1	%02
TI-09021	EXHAUST TEMP	_105	DEGF	DB-00108	CEM FLUE GAS 02	5.0	%02
PI-09004	TURBINE EXH PRESS	5.10	"HGA	DB-00107	CEM CO	334	PPM
LT-09030	DEMIN TANK LEVEL	11.2	"LVL	DB-00T02	CEM NOX	31	PPM
		06	%	SUZ	CEM SOZ	0	PPM V
PIC=02020	ID FAN INLEI	. 90	/0PEN	V CUA	KAIE %		% %
PI-02020	ED EAN THET	-0.19			METHANE	-U.L) 751 0	70 CH4
PTC-02003	ED DICT DRESSIDE	17 5	VOPEN VMC	FLOW CR4	LEG MASS ELON	-/31.9	
FT-02001		220 08	KIB\H	LEG METER	LEG HEAT ELOW	6026 3	MMRTH
11 02001		220:00	KED/11			~0 34	"H20
FT-02001B	UGA FLOW(CALC)	160.49	кі в/н	WT = 1000	BLR WOOD FEED	8715.4	TONS
FIC-020010	COFA FAN INLET	50	%OPEN	WT-2000	WOOD RETURN	3016.6	TONS
PI-02007	OFA DISCHG PRESS	-12	"WC			502010	
FI-02007	OVERFIRE AIR FLOW	59.58	KLB/H	DDU1	DDU1 START STOP	STOP	
FI-14003	GAS BURNER FLOW	7.0	KLB/H	SPEED DDU	LPAPER FEED 1	0.0	
			•	DDU2	DDU2 START STOP	STOP	
				SPEED DDU2	PAPER FEED 2	0.0	

End rs-A

LOG : 26-JUN-13 11:20:16 LCP-47 LOG REQUESTED

PERFORMANCE

START MS.J

	"PINETREE	POWER-F	TCHBUR	G PERFORMAN	VCE LOG"		
FI-03019	STEAM FLOW	133.02	KPPH	AMBIENT	OUTSIDE AIR TEM	IP 80	DEGF
PI-03016	MAIN STEAM TEMP MAIN STEAM PRESS	952 1238	PSIG	ті-02004	FD OUT AIR HTR	IN 91	DEGF
				TI-02039	AH AIR OUT TEMP	451	DEGF
FI-05012	ATTEMP SPRAY FLOW	15.48	KLB/H	TI-02035	ECON GAS IN	721	DEGF
TI-03007	ATTEMP INLET TEMP	926	DEGF	TI-02036	AH GAS IN TEMP	554	DEGF
TIC-03010	ATTEMP OUT TEMP	732	DEGF	TI-02042	AH GAS OUT TEMP	[,] 315	DEGF
FI-10012	BLOWDOWN FLOW	0.4	KLB/H	TI-02B51	BH INLET TEMP	428	DEGF
TI-03A05	DRUM TEMP	583	DEGF	TI-02C51	BH OUTLET TEMP	422	DEGF
PI-05022	DRUM PRESSURE	1278	PSIG	PDI-02A51	BH DIFF PRESS	5.0	"н2о
LI-05018	DRUM LEVEL	0.2	"NWL	JI-03020	GENERATOR GROSS	16.0	MW
PI-05013	FEEDWATER PRESS	1332	PSIG	JI-03022	STATION SERVICE	2,6	MW
FI-05011	FEEDWATER FLOW	133.70	KLB/H	CALC	STATION NET PWR	13.4	MW
TI-05051	BFP SUCTION TEMP	303	DEGF	JIC-03020	GROSS MW PROD	7751.74	MWHRS
TI-05023	FW TEMP ECON IN	405	DEGF	JI-03022	STA.SERVICE	20.84	MWHRS
PI-06012	DEAERATOR PRESS	54.7	PSIG	JQI-03024	NET MHR PROD	9087.08	MWHRS
ті-06006	COND DISCH TEMP	139	DEGF	FI-30170	FIRING RATE	51.0	PCNT
TI-09001	COND RCVR TEMP	_140	DEGF	DB-00106	CEM NH3	0.5	PPM
TI-09023	COND LEG A	/3./	DEGF	DB-00109	STACK OPACITY	0.8	%

Page 3

			ι	Intitled			
TI-09024	COND LEG B	73.7	DEGF	AI-02030	BOILER EXIT O2	3.5	%02
TI-09021	EXHAUST TEMP	105	DEGF	DB-00108	CEM FLUE GAS 02	5.3	%02
PI-09004	TURBINE EXH PRESS	4.94	"HGA	DB-00107	CEM CO	270	PPM
LI-09030	DEMIN TANK LEVEL	75.6	"LVL	DB-00105	CEM NOX	29	PPM
				S02	CEM SO2	-0	PPM
PIC-02020	ID FAN INLET	96	%OPEN	UREA FLOW	RATE %	0.0	%
PI-02020	FURNACE PRESSURE	-0.20	"н2о	% CH4	% METHANE	-0.15	% CH4
PIC-02003	FD FAN INLET	56	%OPEN	FLOW CH4	LFG GAS FLOW	~750.0	CFM
PIC-02003	FD DUCT PRESSURE	13.5	"WC	LFG METER	LFG MASS FLOW	965.9	MSCF
FI-02001	FD AIR FLOW	219.94	KLB/H	LFG METER	LFG HEAT FLOW	6029.2	MMBTU
				LFG SUC	LFG SUCTION	-0.34	"н2о
FI-02001B	UGA FLOW(CALC)	154.57	KLB/H	WT-1000	BLR WOOD FEED	8729.2	TONS
FIC-020010	COFA FAN INLET	56	%OPEN	WT-2000	WOOD RETURN	3018.9	TONS
PI-02007	OFA DISCHG PRESS	-12	"WC		_		
FI-02007	OVERFIRE AIR FLOW	[65.53	KLB/H	DDUI	DDU1 START STOP	STOP	
FI-14003	GAS BURNER FLOW	4.8	KLB/H	SPEED DDU	LPAPER FEED 1	0.0	
				DDU2	DDU2 START STOP	STOP	
				SPEED DDU	2PAPER FEED 2	0.0	

LOG : 26-JUN-13 12:22:54 LCP-47

LOG REQUESTED

PERFORMANCE

	"PINETREE	E POWER-I	FITCHBURG	G PERFORMAN	NCE LOG"		
FI-03019	STEAM FLOW	133.08	КРРН	AMBIENT	OUTSIDE AIR TEM	P 75	DEGF
TI-03013	MAIN STEAM TEMP	930	DEGF			_	
PI-03016	MAIN STEAM PRESS	1245	PSIG	TI-02004	FD OUT AIR HTR :	in 90	DEGF
				TI-02039	AH AIR OUT TEMP	457	DEGE
FI-05012	ATTEMP SPRAY FLO	W 15.49	KLB/H	TI-02035	ECON GAS IN	712	DEGF
TI-03007	ATTEMP INLET TEM	1P 934	DEGF	TI-02036	AH GAS IN TEMP	546	DEGF
TIC-03010	ATTEMP OUT TEMP	694	DEGF	TI-02042	AH GAS OUT TEMP	319	DEGF
FI-10012	BLOWDOWN FLOW	0.4	KLB/H	TI-02B51	BH INLET TEMP	424	DEGF
TI-03A05	DRUM TEMP	583	DEGF	TI-02C51	BH OUTLET TEMP	417	DEGF
PI-05022	DRUM PRESSURE	1285	PSIG	PDI-02A51	BH DIFF PRESS	4.8	"H2O
LI-05018	DRUM LEVEL	0.5	"NWL	JI-03020	GENERATOR GROSS	16.1	MW
PI-05013	FEEDWATER PRESS	1333	PSIG	JI-03022	STATION SERVICE	2.7	MW
FI-05011	FEEDWATER FLOW	124.05	KLB/H	CALC	STATION NET PWR	13.4	MW
TI-05051	BFP SUCTION TEMP	° 304	DEGF	JIC-03020	GROSS MW PROD	7768.80	MWHRS
TI-05023	FW TEMP ECON IN	404	DEGF	JI-03022	STA.SERVICE	23.49	MWHRS
PI-06012	DEAERATOR PRESS	54.3	PSIG	JQI-03024	NET MHR PROD	9089.75	MWHRS
TI-06006	COND DISCH TEMP	136	DEGF	FI-30170	FIRING RATE	51.0	PCNT
TI-09001	COND RCVR TEMP	137	DEGF	DB-00106	CEM NH3	-0.1	PPM
TI-09023	COND LEG A	73.7	DEGF	DB-00109	STACK OPACITY	0.5	%
TI-09024	COND LEG B	73.7	DEGF	AI-02030	BOILER EXIT O2	2.2	%02
TI-09021	EXHAUST TEMP	105	DEGF	DB-00108	CEM FLUE GAS 02	4.7	%02
PI-09004	TURBINE EXH PRES	s 4.60	"HGA	DB-00107	CEM CO	480	PPM
LI-09030	DEMIN TANK LEVEL	. 69.8	"LVL	DB-00105	CEM NOX	26	PPM
				S02	CEM SO2	-0	PPM
PIC-02020	ID FAN INLET	96	%OPEN	UREA FLOW	RATE %	0.0	%
PI-02020	FURNACE PRESSURE	-0.14	"H2O	% CH4	% METHANE	-0.15	% CH4
PIC-02003	FD FAN INLET	56	%OPEN	FLOW CH4	LFG GAS FLOW	-750.9	CFM
PIC-02003	FD DUCT PRESSURE	12.8	"WC	LFG METER	LFG MASS FLOW	965.9	MSCF
FI-02001	FD AIR FLOW	222.11	KLB/H	LFG METER	LFG HEAT FLOW	6037.0	MMBTU
				LFG SUC	LFG SUCTION	-0.34	"H2O
FI-02001B	UGA FLOW(CALC)	149.31	KLB/H	WT-1000	BLR WOOD FEED	8768.0	TONS
FIC-020010	COFA FAN INLET	65	%OPEN	WT-2000	WOOD RETURN	3026.3	TONS
PI-02007	OFA DISCHG PRESS	5 -12	"WC	_			
FI-02007	OVERFIRE AIR FLO	W 72.81	KLB/H	DDU1	DDU1 START STOP	STOP	
FI-14003	GAS BURNER FLOW	4.7	KLB/H	SPEED DDU	IPAPER FEED 1	0.0	
				DDU2	DDU2 START STOP	STOP	
				SPEED DDU	2PAPER FEED 2	0.0	

E-d KS-J

CEM testing 6-26-13 8M 2.5/ 60

LOG : 27-JUN-13 08:20:17 LCP-47

LOG REQUESTED

PERFORMANCE

	"PINETREE	POWER-F	TCHBUR	S PERFORMAN	VCE LOG"		
FI-03019	STEAM FLOW	140.95	KPPH	AMBIENT	OUTSIDE AIR TEMP	e 66	DEGF
TI-03013	MAIN STEAM TEMP	1940	DEGF	03004		01	
PI-03010	MAIN STEAM PRESS	1250	PSIG	11-02004 TT 02020	FD OUT AIR HTR J	N 81	DEGF
$ET_{-}05012$	ATTEMO SORAV ELON	15 17	VIP/U	T_{-02039}	AH AIR OUT TEMP	439	DEGE
TT-03007	ATTEMP TNIFT TEMP	940		TT=02033	AH GAS IN TEMP	553	DEGE
TIC-03010	ATTEMP OUT TEMP	719	DEGF	TI-02042	AH GAS OUT TEMP	301	DEGE
FI-10012	BLOWDOWN FLOW	0.4	KLB/H	TI-02B51	BH INLET TEMP	434	DEGF
TI-03A05	DRUM TEMP	584	DEGF	TI-02C51	BH OUTLET TEMP	420	DEGF
PI-05022	DRUM PRESSURE	1294	PSIG	PDI-02A51	BH DIFF PRESS	5.1	"н2о
LI-05018	DRUM LEVEL	-0.4	"NWL	JI-03020	GENERATOR GROSS	17.3	MW
PI-05013	FEEDWATER PRESS	145 00	PSIG	JI-03022	STATION SERVICE	2.6	MW
F1 = 05011	RED SUCTION TEMP	145.98	KLB/H		STATION NET PWK	14.7	MW
TT-05031	EW TEMP FOON TN	408		JT-03020	STA SERVICE	67 21	MWHRS
PI-06012	DEAERATOR PRESS	57.7	PSTG	101 - 03024	NET MHR PROD	118.48	MWHRS
TI-06006	COND DISCH TEMP	130	DEGF	FI-30170	FIRING RATE	50.0	PCNT
TI-09001	COND RCVR TEMP	_131	DEGF	DB-00106	CEM NH3	5.4	PPM
TI-09023	COND LEG A	73.7	DEGF	DB-00109	STACK OPACITY	1.9	%
TT 00021	COND LEG B	/3./	DEGE	AI-02030	BOILER EXIT O2	2.8	%02 %02
PT_09021	TUDRINE EVU DDESS	C8 5		DB = 00108	CEM FLUE GAS UZ	201	
1 T = 09004	DEMIN TANK LEVEL	82 4		DB-00107	CEM CO CEM NOX	43	
E1 05050		0211		S02	CEM SO2	-0	PPM
PIC-02020	ID FAN INLET	96	%OPEN	UREA FLOW	RATE %	0.0	%
PI-02020	FURNACE PRESSURE	-0.14	"н2о	% CH4	% METHANE	-0.15	% CH4
PIC-02003	FD FAN INLET	56	%OPEN	FLOW CH4	LFG GAS FLOW	-750.9	CFM
PIC-02003	FD DUCT PRESSURE	13.0	"WC	LFG METER	LFG MASS FLOW	965.9	MSCF
FI-02001	FD AIR FLOW	223.72	KLB/H	LFG METER	LFG HEAT FLOW	6186.7	MMBIU
ET_020018		162 81	VI 8 /U	LFG SUC	REP WOOD FEED	-0.54	HZU TONS
FTC = 020010	TOFA FAN TNIFT	50	%OPEN	WT = 2000	WOOD RETURN	3116 5	TONS
PI-02007	OFA DISCHG PRESS	-12	"WC	11 2000	NOOD REPORT	7770.7	TONO
FI-02007	OVERFIRE AIR FLOW	60.55	KLB/H	DDU1	DDU1 START STOP	STOP	
FI-14003	GAS BURNER FLOW	5.9	KLB/H	SPEED DDU	LPAPER FEED 1	0.0	
				DDU2	DDU2 START STOP	STOP	
				SPEED DDU2	2PAPER FEED 2	0.0	

LOG : 27-JUN-13 10:25:15

LCP-47 LOG REQUESTED

- 2

"PINETREE POWER-FITCHBURG PERFORMANCE LOG" FI-03019 STEAM FLOW 120.41 KPPH 67 DEGF AMBIENT OUTSIDE AIR TEMP 946 DEGF TI-03013 MAIN STEAM TEMP 1239 PSIG TI-02004 FD OUT AIR HTR IN PI-03016 MAIN STEAM PRESS 83 DEGF 440 DEGF TI-02039 AH AIR OUT TEMP ATTEMP SPRAY FLOW 15.52 KLB/H ATTEMP INLET TEMP 925 DEGF FI-05012 TI-02035 ECON GAS IN 715 DEGF AH GAS IN TEMP AH GAS OUT TEMP TI-03007 TI-02036 544 DEGF TIC-03010 ATTEMP OUT TEMP TI-02042 735 DEGF 303 DEGF TI-02851 FI-10012 BLOWDOWN FLOW 0.3 KLB/H BH INLET TEMP 422 DEGF DRUM TEMP 583 DEGF TI-02C51 TI~03A05 BH OUTLET TEMP 414 DEGF PI-05022 DRUM PRESSURE 1270 PSIG PDI-02A51 BH DIFF PRESS 5.0 "H2O 0.3 "NWL LI-05018 DRUM LEVEL JI-03020 GENERATOR GROSS 14.9 MW PI-05013 FEEDWATER PRESS 1315 PSIG JI-03022 STATION SERVICE 2.5 MW FI-05011 FEEDWATER FLOW 118.00 KLB/H CALC STATION NET PWR 12.4 MW TI-05051 BFP SUCTION TEMP 298 DEGF JIC-03020 GROSS MW PROD 8043.08 MWHRS

PERFORMANCE

Page 5

			CEM test	ing 6-26-1	.3		
TI-05023	FW TEMP ECON IN	397	DEGF	JI-03022	STA.SERVICE	72.53	MWHRS
PI-06012	DEAERATOR PRESS	48.7	PSTG	JOT-03024	NET MHR PROD	9122.03	MWHRS
				5 QL 000L .		5222.05	
ті-06006	COND DISCH TEMP	123	DEGF	FI-30170	FIRING RATE	47.0	PCNT
TI-09001	COND RCVR TEMP	128	DEGF	DB-00106	CEM NH3	1.4	PPM
TT-09023	COND LEG A	73.7	DEGE	DB-00109	STACK OPACITY	1.0	%
TT-09024	COND LEG B	73.7	DEGE	AT-02030	BOTLER EXTT 02	3.3	802
TT-09021	EXHAUST TEMP	105	DEGE	DB-00108	CEM FLUE GAS 02	6.4	%02
PT-09004	TURBINE EXH PRESS	3.83	"HGA	DB-00107	CFM CO	167	PPM
IT-09030	DEMIN TANK LEVEL	73.7	"I VI	DB-00105	CEM NOX	53	PPM
				S02	CEM SO2	-0	PPM
PIC-02020	ID FAN INLET	94	%OPEN	UREA FLOW	RATE %	0.Ŏ	%
PI-02020	FURNACE PRESSURE	-0.18	"H2O	% CH4	% METHANE	-0.15	% CH4
PTC-02003	FD FAN INLET	54	%OPEN	FLOW CH4	LEG GAS ELOW	-750.0	CFM
PTC-02003	FD DUCT PRESSURE	13.1	"WC	I FG METER	LEG MASS FLOW	965.9	MSCE
FT-02001	FD ATR FLOW	213.39	ків/н	LEG METER	LEG HEAT FLOW	6202.3	MMRTH
		223.35	1120/11		LEG SUCTION	-0 34	"H20
FT-02001B	LIGA FLOW(CALC)	158 56	ків/н	WT-1000	BLR WOOD EFED	9361 0	TONS
FTC = 020010	COEA EAN INLET	44	%OPEN	WT-2000	WOOD RETURN	3128 6	TONS
PT-02007	OFA DISCHG PRESS	~12	"WC	101 2000	NOOD REPORT	5120.0	1005
FT-02007	OVERETRE ATR ELOW	1 54 36	KIR/H	1ווחח	DULI START STOR	STOP	
ET-14003	GAS BURNER ELOW	6 1			IDADER EFEN 1	5101	
1 T T4000	GAS BORNER LEON	0 ª T	KLD/ II		DUL START STOR		
					DDUZ STAKI STUP	3100	
				SPEED DDD	LPAPEK FEED Z	v.u	

End RM2-5/10-2

57027 PM 2.5/10

LOG : 27-JUN-13 10:46:33 LCP-47

LOG REQUESTED

PERFORMANCE

FI-03019	"PINETREE P STEAM FLOW 1 MAIN STEAM TEMP	OWER-F: 18.35	ITCHBURG KPPH	FERFORMAN AMBIENT	NCE LOG" OUTSIDE AIR TEMF	• 69	DEGF	- 3
PI-03016	MAIN STEAM PRESS	1244	PSIG	TI-02004 TI-02039	FD OUT AIR HTR I AH AIR OUT TEMP	IN 83 440	DEGF DEGF	
FI-05012 TI-03007 TIC-03010	ATTEMP SPRAY FLOW ATTEMP INLET TEMP ATTEMP OUT TEMP	15.53 925 730	KLB/H DEGF DEGF	TI-02035 TI-02036 TI-02042	ECON GAS IN AH GAS IN TEMP AH GAS OUT TEMP	713 542 305	DEGF DEGF DEGF	
FI-10012 TI-03A05 PT-05022	BLOWDOWN FLOW DRUM TEMP DRUM PRESSURE	0.4 580 1273	KLB/H DEGF PSTG	TI-02B51 TI-02C51 PDT-02A51	BH INLET TEMP BH OUTLET TEMP BH DTEE PRESS	418 410 5-0	DEGF DEGF "H2O	
LI-05018 PI-05013 FT-05011	DRUM LEVEL FEEDWATER PRESS	-0.1 1322 25 47	"NWL PSIG	JI-03020 JI-03022	GENERATOR GROSS STATION SERVICE	14.8 2.4 12.4	MW MW	
TI-05051 TI-05023 PI-06012	BFP SUCTION TEMP FW TEMP ECON IN DEAERATOR PRESS	297 396 47.8	DEGF DEGF PSIG	JIC-03020 JI-03022 JQI-03024	GROSS MW PROD & STA.SERVICE NET MHR PROD S	3048.41 73.41 9122.53	MWHRS MWHRS MWHRS	
TI-06006 TI-09001 TI-09023 TI-09024 TI-09021	COND DISCH TEMP COND RCVR TEMP COND LEG A COND LEG B EXHAUST TEMP	125 127 73.7 73.7 105	DEGF DEGF DEGF DEGF DEGF	FI-30170 DB-00106 DB-00109 AI-02030 DB-00108	FIRING RATE CEM NH3 STACK OPACITY BOILER EXIT O2 CEM FLUE GAS O2	47.0 9.4 1.1 3.5 6.2	PCNT PPM % %02 %02	
PI-09004 LI-09030	TURBINE EXH PRESS DEMIN TANK LEVEL	3.83 72.5	"HGA "LVL	DB-00107 DB-00105 S02	CEM CO CEM NOX CEM SO2	131 55 -0	PPM PPM PPM	
PIC-02020 PI-02020 PIC-02003 PIC-02003	ID FAN INLET FURNACE PRESSURE FD FAN INLET FD DUCT PRESSURE	93 93 -0.22 53 9 13.4	%OPEN "H2O %OPEN "WC	UREA FLOW % CH4 FLOW CH4 LFG METER	RATE % % METHANE LFG GAS FLOW LFG MASS FLOW	0.0 -0.15 -750.9 965.9	% % CH4 CFM MSCF	
FI-02001 FI-020018 FIC-020010	UGA FLOW(CALC) 1 DOFA FAN INLET	.05.98 .52.48 .43 (KLB/H KLB/H %OPEN	LFG METER LFG SUC WT-1000 WT-2000	LFG HEAT FLOW LFG SUCTION BLR WOOD FEED WOOD RETURN	-0.34 9372.9 3130.9	H20 TONS TONS	
FI-02007 FI-14003	GAS BURNER FLOW	53.54 5.2	wс KLB/H KLB/H	DDU1 SPEED DDU1	DDU1 START STOP 1PAPER FEED 1	STOP 0.0		

Page 6

LOG : 27-JUN-13 12:54:07 LCP-47 LOG REQUESTED

PERFORMANCE

REE	POWER-FITCHBURG	PERFORMANCE	LOG"
	120 40 0000		CTDE

FT 02010	"PINETREE	POWER-F			NCE LOG"	. 70	DECE
TI-03013	MAIN STEAM TEMP	129.40 950	DEGF	AMBIENI	OUISIDE AIR TEMP	, 12	DEGF
PI-03016	MAIN STEAM PRESS	1265	PSIG	TI-02004	FD OUT AIR HTR]	N 86	DEGF
FI-05012	ATTEMP SPRAY FLOW	15,50	KLB/H	TI-02039	AH AIR OUI IEMP	439	
TI-03007	ATTEMP INLET TEMP	932	DEGF	ті-02036	AH GAS IN TEMP	543	DEGF
TIC-03010 FT-10012	ATTEMP OUT TEMP	/34	DEGF KIR/H	TI - 02042 TT - 02851	AH GAS OUT TEMP	303	DEGE
TI-03A05	DRUM TEMP	582	DEGF	TI-02C51	BH OUTLET TEMP	412	DEGF
PI-05022	DRUM PRESSURE	1301	PSIG	PDI-02A51	BH DIFF PRESS	5.2	"H2O
PI-05013	FEEDWATER PRESS	1354	PSIG	JI-03020	STATION SERVICE	2.5	MW
FI-05011	FEEDWATER FLOW	132.55	KLB/H	CALC	STATION NET PWR	13.4	MW
TI-05023	FW TEMP ECON IN	403		JIC-03020 JI-03022	STA.SERVICE	78.68	MWHRS
PI-06012	DEAERATOR PRESS	52.5	PSIG	JQI-03024	NET MHR PROD	126.63	MWHRS
ті-06006	COND DISCH TEMP	129	DEGF	FI-30170	FIRING RATE	47.0	PCNT
TI-09001	COND RCVR TEMP	131	DEGF	DB-00106	CEM NH3	6.2	PPM
TT-09023	COND LEG A	73.7	DEGE	DB-00109	BOTLER EXTT 02	$\begin{array}{c} \bot \downarrow \downarrow \downarrow \\ 2 \downarrow 7 \end{array}$	% %02
TI-09021	EXHAUST TEMP	105	DEGF	DB-00108	CEM FLUE GAS 02	5.7	%02
PI-09004	TURBINE EXH PRESS	4.05	"HGA "LVI	DB - 00107	CEM CO	105	PPM
LI 05050	DEMIN FANK LEVEL	07.0		S02	CEM SO2	-0	PPM
PIC-02020	ID FAN INLET	93	%OPEN	UREA FLOW	RATE %	0.0	%
PIC-02020	FORNACE PRESSURE	-0.18	HZU %OPEN	⁷⁶ CH4 FLOW CH4	% METHANE LFG GAS FLOW	-750.0	% CH4 CFM
PIC-02003	FD DUCT PRESSURE	13.5	"WC	LFG METER	LFG MASS FLOW	965.9	MSCF
F1-02001	FD AIR FLOW	207.22	KLB/H	LFG METER	LFG HEAT FLOW	6220.9	MMBTU
FI-02001B	UGA FLOW(CALC)	152.74	KLB/H	WT-1000	BLR WOOD FEED	9437.4	TONS
FIC-020010	OFA FAN INLET	43	%OPEN	WT-2000	WOOD RETURN	3139.5	TONS
FI-02007	OVERFIRE AIR FLOW	54.57	KLB/H	DDU1	DDU1 START STOP	STOP	
FI-14003	GAS BURNER FLOW	5.6	KLB/H	SPEED DDU	LPAPER FEED 1	0.0	
				SPEED DDU2	2PAPER FEED 2	510P 0.0	

6-3

RATA Report For 6/26/2013, Hour 08:00

Time	02 १	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/26/2013 08:25	5.5	21.8	3.4	153.8	0.0	0.045	0.003
06/26/2013 08:26	5.5	22.2	1.9	171.8	0.0	0.045	0.001
06/26/2013 08:27	5.5	22.0	2.3	145.1	0.0	0.045	0,002
06/26/2013 08:28	5.6	21.1	4.2	131.2	0.0	0.044	0.003
06/26/2013 08:29	5.7	21.9	3.5	121.9	0.0	0.046	0.003
06/26/2013 08:30	5.0	23.U 22 9	1.8	171 0	0.0	0.048	0.001
06/26/2013 08:32	5.5	22.3	2.0	191.7	0.0	0.046	0.001
06/26/2013 08:33	5.5	21.8	3.0	154.7	0.0	0.045	0.002
06/26/2013 08:34	5,8	21.7	4.2	156.5	0.0	0.046	0.003
06/26/2013 08:35	5.9	22.3	4.2	127.7	0.0	0.047	0.003
06/26/2013 08:36	6.1	22.9	4.4	114.0	0.0	0.050	0.004
06/26/2013 08:37	6.0	24.0	2.0	136.7	0.0	0.051	0.002
06/26/2013 08:38	5.8	24.7	1.9	100.7	0.0	0.052	0.001
06/26/2013 08:39	5.9	23.0	3.4	104.7	0.0	0.051	0.003
06/26/2013 08:41	5.5	24.8	3.9	115 9	0.0	0.052	0.003
06/26/2013 08:42	5.8	25.7	3.6	208.8	0.0	0.054	0,003
06/26/2013 08:43	5.9	26.0	3.9	159.7	0.0	0.055	0.003
06/26/2013 08:44	6.0	27.0	3.8	127.9	0.0	0.058	0.003
06/26/2013 08:45	6.1	27.8	2.9	111.3	0.0	0.060	0.002
06/26/2013 08:46	6.3	28.4	1.6	92.9	0.0	0.063	0.001
06/26/2013 08:47	6.2	28.5	0.8	91.8	0.0	0.062	0.001
06/26/2013 08:48	6.L E 0	27.9	0.4	132.0	0.0	0.060	0.000
06/26/2013 08:49	5.0	27.2	1.4	105.2	0.0	0.057	0.001
06/26/2013 08:51	5.8	27.6	4.9	124.8	0.0	0.058	0.004
06/26/2013 08:52	5.9	29.1	3,2	112.7	0.0	0.062	0.003
06/26/2013 08:53	6.0	29.8	1.3	128.2	0.0	0.064	0.001
06/26/2013 08:54	6.0	29.9	0.0	122.7	0.0	0.064	0.000
06/26/2013 08:55	6.0	29.3	0.3	106.6	0.1	0.063	0.000
06/26/2013 08:56	6.1	27.6	1.3	99.2	0.0	0.060	0.001
06/26/2013 08:57	5.8	27.6	0.7	94.0	0.0	0.058	0.001
06/26/2013 08:58	5.0	27.4	2,1	106.3	0.0	0.058	0.002
06/26/2013 09:00	5.6	28.0	3.0	117.8	0.0	0.058	0.002
06/26/2013 09:01	5.6	27.6	3.8	106.7	0.1	0,057	0.003
06/26/2013 09:02	5.8	28.4	2.8	99.2	0.1	0.060	0.002
06/26/2013 09:03	5.4	29.2	0.6	97.9	0.1	0.059	0.000
06/26/2013 09:04	5.4	29.3	1.1	152.8	0.0	0.059	0.001
06/26/2013 09:05	5.5	27.8	4.0	161.5	0.0	0.057	0.003
06/26/2013 09:06	5.6	28.3	4.4	127.9	0.0	0.058	0.003
06/26/2013 09:07	2.0 5.5	29.1	3.5	109.9	0.0	0.060	0.003
06/26/2013 09:09	5.7	30.2	2.9	94.6	0.1	0.063	0.002
06/26/2013 09:10	5.7	29.5	2.2	128.4	0.1	0.061	0.002
06/26/2013 09:11	5.6	31.6	0.5	113.9	0.1	0.065	0.000
06/26/2013 09:12	5.7	29.9	3.4	111.4	0.1	0.062	0.003
06/26/2013 09:13	5.7	30.4	3.1	106.4	0.1	0.063	0.002
06/26/2013 09:14	5.6	31.3	2.3	124.3	0.1	0.065	0.002
06/26/2013 09:15	5.7	31.5	2.7	158.0	0.1	0,066	0.002
06/26/2013 09:10	5.7	32.0	2.9	119 6	0.1	0.066	0.002
06/26/2013 09:18	5.7	33.1	1.2	103.9	0.1	0.069	0.002
06/26/2013 09:19	5.4	33.2	0.1	106.3	0.1	0.067	0.000
06/26/2013 09:20	5.6	32.5	0.5	109.7	0.1	0.067	0.000
06/26/2013 09:21	5.8	31.9	0.2	147.3	0.1	0.067	0.000
06/26/2013 09:22	5.7	32.5	0.0	122.6	0,0	0,068	0.000
06/26/2013 09:23	5.6	29.1	1.0	115.9	0.0	0.060	0.001
06/26/2013 09:24	5.8	28.5	2.1	134.5	0.0	0.060	0.002
06/26/2013 09:25	5.9	28.9	U.3	130.4	0.1	0.061	0.000
06/26/2013 09:20	2.2 5 9	20.0	0.0	120 R	0.0	0.061	0.000
06/26/2013 09:28	5.8	26.5	0.0	98.2	0.0	0.056	0.000
RATA Run # 1		10.0	0.0		0.0	3.020	0.000

Verified By:

CEMDAS(TM) Data Acquisition System

.

Page 1 of 4

RATA Report For 6/26/2013, Hour 08:00

Time	02 %	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/26/2013 09:29	5.4	23.8	1.7	99.6	0.0	0.048	0.001
06/26/2013 09:30	5.2	23.4	3.3	168.1	0.0	0.047	0.002
06/26/2013 09:31	5.3	23.5	3.9	179.5	0.0	0.047	0.003
06/26/2013 09:32	5.6	24.2	2.1	179.7	0.0	0.050	0.002
06/26/2013 09:33	5.4	25.1	0.0	161.1	0.0	0.051	0.000
06/26/2013 09:34	5.2	24.0	0.6	153.0	0.0	0.048	0.000
06/26/2013 09:35	5.3	22.4	2.6	149.2	0.0	0.045	0.002
Average Value	5.7	27.1	2.2	128.2	0.0	0.057	0.002

RATA Run # 1

Verified By:

_____ CEMDAS(TM) Data Acquisition System

RATA Report For 6/26/2013, Hour 08:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
06/26/2013 08:25	0 192	0 000	10 6		4	
06/26/2013 08:25	0,192	0.000	10.6	0.6	45.3	0.0
06/26/2013 08:27	0.181	0.000	10.7	0.3	20.6	0.0
06/26/2013 08:28	0.165	0.000	10.8	0.4	44,/ 29 C	0.0
06/26/2013 08:29	0 155	0.000	10.2	0.7	30.0	0.0
06/26/2013 08:30	0.150	0 000	10.0	0.0	34 9	0.0
06/26/2013 08:31	0.213	0 0 0 0	11 1	0.2	50 4	0.0
06/26/2013 08:32	0,239	0.000	10.8	0.4	56 5	0.0
06/26/2013 08:33	0.193	0.000	10.5	0.5	45.5	0.0
06/26/2013 08:34	0.200	0.000	10.5	0.7	45.9	0.0
06/26/2013 08:35	0.165	0.000	10.8	0.7	37.5	0.0
06/26/2013 08:36	0.150	0.000	11.1	0.8	33.5	0.0
06/26/2013 08:37	0.178	0.000	11.6	0,4	40.1	0.0
06/26/2013 08:38	0.129	0.000	11.9	0.3	29.6	0.0
06/26/2013 08:39	0.135	0.000	11.5	0.6	30.8	0.0
06/26/2013 08:40	0.136	0.000	11.8	0.7	31.3	0.0
06/26/2013 08:41	0.144	0.000	12.0	0.7	34.2	0.0
06/26/2013 08:42	0.267	0.000	12.5	0.6	61.6	0.0
06/26/2013 08:43	0.206	0.000	12.6	0.7	47.1	0.0
06/26/2013 08:44	0.167	0.000	13.1	0.7	37,6	0.0
06/26/2013 08:45	0.147	0.000	13.4	0.5	32.7	0.0
06/26/2013 08:46	0.125	0.000	13.7	0.3	27.2	0.0
06/26/2013 08:47	0.122	0.000	13.8	0.1	27.0	0.0
06/26/2013 08:48	0.174	0.000	13.5	0.1	38.9	0.0
06/26/2013 08:49	0.135	0.000	13.2	0.3	31.0	0.0
06/26/2013 08:50	0.138	0.000	12.5	1.0	31.7	0.0
06/26/2013 08:51	0.160	0.000	13.3	0.9	36.5	0.0
06/26/2013 08:52	0.146	0.000	14.1 14.4	0.6	33.L 27.7	0.0
06/26/2013 08:54	0.160	0.000	14.4	0,2	3/./	0.0
06/26/2013 08:55	0.139	0.000	14.5	0.0	20, L 21 2	0.0
06/26/2013 08:56	0 131	0.000	13 3	0.1	20.2	0.1
06/26/2013 08:57	0.120	0.000	13.3	0.2	27.2	0.0
06/26/2013 08:58	0.136	0.000	13.2	0.4	31.2	0.0
06/26/2013 08:59	0.188	0.000	13.0	0.4	43.8	0 0
06/26/2013 09:00	0.148	0.000	13.5	0.5	34.7	0.1
06/26/2013 09:01	0.134	0.000	13.3	0.7	31.3	0.1
06/26/2013 09:02	0.127	0.000	13.7	0.5	29.2	0.1
06/26/2013 09:03	0.121	0.000	14.1	0.1	28.8	0.1
06/26/2013 09:04	0.189	0.000	14.2	0.2	45.0	0.0
06/26/2013 09:05	0.201	0.000	13.5	0.7	47.6	0.0
06/26/2013 09:06	0.161	0.000	13.7	0.8	37.8	0.0
06/26/2013 09:07	0.138	0.000	14.1	0.6	32.3	0.0
06/26/2013 09:08	0.126	0.000	14.5	0.4	29.7	0.1
06/26/2013 09:09	0.120	0.000	14.6	0.5	27.8	0.1
06/26/2013 09:10	0,163	0.000	14.3	0.4	37.8	0.1
	0.143	0.000	15.3	0.1	33.6	0.1
06/26/2013 09:12	0.141	0.000	14.5	0.6	32.8	0.1
06/26/2013 09:13	0.135	0.000	14.7	0.6	31.4	0.1
06/26/2013 09:14	0.156	0.000	15.2	0.4	36.7	0.1
06/26/2013 09:15	0.200	0.000	15.3	0.5	46.6	0.1
06/26/2013 09.17	0,150	0.000	15.4	0.5	40,2 >= 1	0.1 0 1
06/26/2013 09.18	0 132	0.000	15.9 16 A	0,4 0 ว	30.4 20 6	. U.L
06/26/2013 09:19	0 1 7 1	0 000	16 1	0.4	20.0	V.L
06/26/2013 09:20	0.138	0.000	15 7	0.0	31.3 30 3	0.1
06/26/2013 09:21	0,189	0,000	15.5	0.0	43 5	0.1
06/26/2013 09:22	0.156	0.000	15.8	0.0	36.2	0 0
06/26/2013 09:23	0.146	0.000	14.1	0.2	34.3	0.0
06/26/2013 09:24	0,172	0.000	13.8	0.4	39.6	0.0
06/26/2013 09:25	0.168	0.000	14.0	0.1	38.4	0.1
06/26/2013 09:26	0.154	0.000	13.8	0.0	35.1	0.0
06/26/2013 09:27	0.169	0.000	13.1	0.0	38.4	0.0

Verified By:

RATA Run # 1

Page 3 of 4

Unit 1

RATA Report For 6/26/2013, Hour 08:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
05/25/2012 09.28	0 126	0 000	10.0	0 0	29.0	0.0
06/26/2013 09:28	0.120	0.000	11 5	0.0	20.9	0.0
06/26/2013 09:20	0.125	0.000	11.5	0.3	49.4	0.0
06/26/2013 09:30	0,204	0.000	11.4 11 A	0.0	53 0	0.0
06/26/2013 09:32	0.220	0.000	11 7	0.1	53 0	0.0
06/26/2013 09:32	0.220	0.000	12 2	0.4	47 5	0.0
06/26/2013 09:34	0.186	0.000	11.6	0.1	45.2	0.0
06/26/2013 09:35	0.183	0.000	10.8	0.5	44.0	0.0
Average Value	0.163	0,000	13.1	0.4	37.7	0.0

RATA Run # 1

Verified By:

CEMDAS(TM) Data Acquisition System

RATA Report For 6/26/2013, Hour 09:00

Time	02 %	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/26/2013 09:55	4,8	21.8	2.4	259.3	0.0	0.042	0.002
06/26/2013 09:56	4.8	20.7	3.9	419.5	0.0	0.040	0.003
06/26/2013 09:57	4.9	20.8	4.6	431.0	0.0	0.040	0.003
06/26/2013 09:58	5.2	21.6	3.7	310.8	0.0	0.043	0.003
06/26/2013 09:59	5.4	21.8	3.1	174.4	0.0	0.044	0.002
06/26/2013 10:00	4.9	21.8	1.3	234.4	0.0	0.042	0.001
06/26/2013 10:01	4.6	22.0	1.2	375.4	0.0	0.042	0.001
06/26/2013 10:02	4.6	20.5	3.8	511.8	0.0	0.039	0.003
06/26/2013 10:03	4./	20.7	4.7	465.7	0.0	0.040	0.003
06/26/2013 10:04	5.0	21.5	4.0	334.4 242 C	0.0	0.042	0.003
06/26/2013 10:05	4 9	22.2	1 4	243.0	0.0	0.044	0.002
06/26/2013 10:07	4.9	22.9	2.2	284.0	0.0	0.045	0.002
06/26/2013 10:08	5.1	22.4	3.1	234.7	0.0	0,044	0.002
06/26/2013 10:09	4.9	22.7	2.8	197.4	0.0	0.044	0,002
06/26/2013 10:10	4.6	22.6	2.5	282.7	0.0	0.043	0.002
06/26/2013 10:11	4.5	23.0	2.6	511.8	0.0	0.043	0.002
06/26/2013 10:12	4.7	22,6	4.4	511.8	0.0	0.043	0.003
06/26/2013 10:13	5.0	22.7	5.7	363.3	0.0	0.044	0.004
06/26/2013 10:14	5.1	24.0	4.6	216.1	0.0	0.047	0,003
06/26/2013 10:15	5.1	25.2	2.9	182.2	0.0	0.050	0,002
06/26/2013 10:16	5.0	25.6	1.8	230.1	0.0	0.050	0.001
06/26/2013 10:17	5.0	25.4	0.9	309.9	0.0	0.050	0.001
06/26/2013 10:18	5.3	24.4	2.1	225.5	0.0	0.049	0.002
06/26/2013 10:19 06/26/2013 10:20	2.2	∠3.3 24 E	4.4	145.2	0.0	0.047	0.003
06/26/2013 10:20	4.9	24.5	4.1	100.1	. 0.0	0.048	0.003
06/26/2013 10:22	5.0	25.5	2.6	401 1	0.0	0,049	0.003
06/26/2013 10:23	5.4	27.1	1.4	237.4	0.0	0.055	0.002
06/26/2013 10:24	5.4	25.9	2.1	144.7	0.0	0,053	0.002
06/26/2013 10:25	5.1	26.3	2.1	148.8	0.0	0.052	0.002
06/26/2013 10:26	5.0	25.9	1.9	233.7	0.0	0.051	0.001
06/26/2013 10:27	5.2	25.8	1.9	267.9	0.0	0.051	0.001
06/26/2013 10:28	5.1	25.3	2.8	228.0	0.0	0.050	0.002
06/26/2013 10:29	5.1	25.1	3.9	196.2	0.0	0.050	0.003
06/26/2013 10:30	4.8	25.4	4.2	264.0	0.1	0.049	0.003
06/26/2013 10:31	4.7	25.9	4.0	404.5	0.1	0.049	0.003
06/26/2013 10:32	5.1	26.7	3.6	411.6	0.0	0.053	0.003
06/26/2013 10:33	5.1	27.7	0.9	279.5	0.0	0.055	0.001
06/26/2013 10:34	5.0	27.9	1.1	224.6	. 0.0	0.055	0.001
06/26/2013 10:35	-±.0 4 9	20.5	2.5	200.0	0.0	0.052	0.002
06/26/2013 10:37	5.0	27,2	4 1	286.3	. 0.0	0.053	0.002
06/26/2013 10:38	5.3	28.2	2.8	289.0	0.0	0.055	0.002
06/26/2013 10:39	5.2	28.8	0.8	236.8	0.0	0.057	0.001
06/26/2013 10:40	5.0	29.0	0.9	222.9	0.1	0.057	0.001
06/26/2013 10:41	5.1	27.9	3.3	241.7	0.1	0.055	0.002
06/26/2013 10:42	5.2	28.3	3.3	218.9	0.1	0.056	0.002
06/26/2013 10:43	5.4	28.9	4.8	178.0	0.0	0.059	0.004
06/26/2013 10:44	5.6	29.5	2.8	204.1	0.0	0.061	0.002
06/26/2013 10:45	5.3	31.4	0.3	249.8	0.0	0.063	0.000
06/26/2013 10:46	5.2	29.8	1.0	244.3	0.0	0.059	0.001
06/26/2013 10:47	5.5	28.3	3.6	194.6	0.0	0.058	0.003
06/26/2013 10:48	5.5	29.6	1.1	178.6	0.0	0.061	0.001
06/26/2013 10:49	⊃.∠ ⊑ 1	20.0	0.1 2 E	104.5	0.0	0.060	0.001
06/26/2013 10.51	5,1 5,1	∠0,0 29 1	2.0 2 ⊑	220.1 259 5	0.0	0.05/	0.002
06/26/2013 10.52	2°1 4 9	29.5	2,2	209.0 394 K	0.0	0.050	0.003
06/26/2013 10:53	4.9	30.1	3.0	462.0	0.0	0.058	0.002
06/26/2013 10:54	4.9	30.2	3.6	459.3	0.0	0.059	0.003
06/26/2013 10:55	5.0	31.0	2.2	461.8	0.0	0.061	0.002
06/26/2013 10:56	5.1	31.5	0,6	384.3	0.0	0.062	0.000
06/26/2013 10:57	5.1	30.6	1.8	310.8	0.0	0.060	0.001
RATA Run # 2						********	

Verified By:

CEMDAS(TM) Data Acquisition System

Page 1 of 4

PineTree Power Fitchburg

Created: 06/27/13 14:00

Unit 1

5		•
		=
RA	TA Report	
For 6/26	/2013, Hour 09:00	

Time	02 १	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX 1b/MBtu	NH3 lb/MBtu
			*********				**
Average Value	5.0	25.8	2.8	287.9	0.0	0.051	0.002

RATA Run # 2

Verified By:

CEMDAS(TM) Data Acquisition System

RATA Report For 6/26/2013, Hour 09:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
06/26/2013 09:55	0.304	0.000	10.6	0.4	76.5	
06/26/2013 09:56	0.492	0.000	10.1	0.7	124.2	0.0
06/26/2013 09:57	0.510	0.000	10.1	0.8	126.8	0,0
06/26/2013 09:58	0.377	0.000	10.4	0.7	91.5	0.0
06/26/2013 09:59	0.215	0.000	10.6	0.6	51.4	0.0
06/26/2013 10:00	0.277	0.000	10.5	0.2	68.9	0.0
06/26/2013 10:01	0.433	0.000	10.6	0,2	110.3	0.0
06/26/2013 10:02	0.590	0.000	9.9	0.7	150.6	0.0
06/26/2013 10:03	0.542	0.000	10.0	0,8	137.1	0,0
06/26/2013 10:04	0.423	0.000	10.4	0.9	103.9	0.0
06/26/2013 10:05	0.293	0.000	10.8	0.6	71.8	0.0
06/26/2013 10:08	0.293	0.000	12.2	0.3	/3.2	0.0
06/26/2013 10.07	0.000	0.000	12.3	0.4	783	0.0
06/26/2013 10:00	0.233	0,000	12.5	0.0	66.4	0.0
06/26/2013 10:10	0.326	0.000	12.7	0.5	96.9	0.0
06/26/2013 10:11	0.586	0.000	13.0	0.5	175.6	0.0
06/26/2013 10:12	0.595	0.000	12.8	0.9	176.3	0.0
06/26/2013 10:13	0.433	0.000	12.7	1.2	124.2	0.0
06/26/2013 10:14	0.260	0.000	13.4	0.9	73.6	0.0
06/26/2013 10:15	0.219	0.000	13,9	0.6	61.3	0.0
06/26/2013 10:16	0.274	0.000	14.2	0.4	77.7	0.0
06/26/2013 10:17	0.370	0.000	14.1	0.2	104.4	0.0
06/26/2013 10:18	0.276	0.000	13.6	0.4	76.6	0.0
06/26/2013 10:19	0.178	0.000	13.1	0.9	49.6	0.0
06/26/2013 10:20	0.189	0.000	13.8	0.9	54.9	0.0
06/26/2013 10:21	0.280	0.000	14.3	0.9	81.3	0.0
06/26/2013 10:22 06/26/2013 10:22	0,4/8	0.000	14.2	0.5	135.7	0.0
06/26/2013 10:23	0.293	0.000	14.9	0.3	/9.4	0.0
06/26/2013 10.25	0.179	0.000	14.5	0,4	40, J 10 C	0.0
06/26/2013 10:26	0.279	0.000	14 0	0.4	76.9	0.0
06/26/2013 10:27	0.325	0.000	14.1	0.4	89.0	0.0
06/26/2013 10:28	0.274	0.000	13.8	0,6	75.9	0.0
06/26/2013 10:29	0.236	0.000	13.8	0.8	65.4	0.0
06/26/2013 10:30	0.310	0.000	14.2	0.9	89.7	0.1
06/26/2013 10:31	0.470	0.000	14.2	0.8	135.3	0.1
06/26/2013 10:32	0.495	0.000	14.7	0.7	137.5	0.0
06/26/2013 10:33	0.336	0.000	15.2	0.2	93.6	0.0
06/26/2013 10:34	0.268	0.000	15.3	0.2	75.1	0.0
06/26/2013 10:35	0.338	0.000	14.9	0.5	97.2	0.0
06/26/2013 10:36	0.472	0.000	15.1	0.6	134.8	0.0
06/26/2013 10:37	0.342	0.000	14.8	0.8	95.7	0.0
06/26/2013 10:30	0.354	0.000	15.0	0.6	97.0	0.0
06/26/2013 10:40	0.265	0.000	16 0	0.2	74.9	0.0
06/26/2013 10:41	0.291	0.000	15 5	0.2	81.8	0.1
06/26/2013 10:42	0.266	0.000	15.9	0.7	74.8	0.1
06/26/2013 10:43	0.220	0.000	16.4	1,0	61.4	0.0
06/26/2013 10:44	0.257	0.000	16.8	0.6	70.7	0.0
06/26/2013 10:45	0.306	0.000	17.8	0.1	86.0	0.0
06/26/2013 10:46	0.296	0.000	16.8	0.2	83.6	0.0
06/26/2013 10:47	0.242	0.000	15.9	0.7	66.4	0.0
06/26/2013 10:48	0.223	0.000	16.5	0.2	60.7	0,0
06/26/2013 10:49	0.224	0.000	16.8	0.1	62.9	0.0
06/26/2013 10:50	0.273	0.000	16.2	0.5	77.6	0.0
06/26/2013 10:51	0.312	0.000	16.4	0.7	89.2	0.0
UD/20/2013 10:52	0.467	0.000	16.9	0.6	137.3	0.0
06/26/2013 10.54	0.546	0.000	17.1 15.1	0.6	159.9	0.0
06/26/2013 10:54	0.543	0.000	17 E	0.8	150,4 150 p	0.0
06/26/2013 10:55	0.551 0 467	0,000	17.5	0.5	120.5	0.0
06/26/2013 10:57	0.374	0.000	17.1	0.1	105 8	0.0
RATA Run # 2						0.0

Verified By:

Page 3 of 4

Created: 06/27/13 14:00 Unit 1

RATA Report For 6/26/2013, Hour 09:00

Time	CO	SO2	NOX	NH3	CO	SO2
	lb/MBtu	lb/MBtu	lb/hr	lb/hr	lb/hr	lb/hr
Average Value	0.343	0.000	14.1	0.6	94.8	0.0

RATA Run # 2

Verified By:

_____ CEMDAS(TM) Data Acquisition System

RATA Report For 6/26/2013, Hour 11:00

Time	02 १	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/26/2013 11:20	5.3	27.7	1.4	275.3	0.0	0,056	0.001
06/26/2013 11:21	4.8	26.8	6.9	305.2	0.0	0.052	0.005
06/26/2013 11:22	4.5	27.1	26.7	385.9	0.0	0.051	0.019
06/26/2013 11:23	4.2	31.0	41.4	447.8	0.1	0.057	0.028
06/26/2013 11:24	4.0	50.9	46.2	431.6	0.3	0.092	0.031
06/26/2013 11:25	4.1	60.0	44.0	457.3	0.4	0.109	0.030
06/26/2013 11:26	4.3	84.7	16.1	422.5	0.5	0.157	0.011
06/26/2013 11:27	4.3	91.3	4.3	320.4	0.6	0.169	0.003
06/26/2013 11.29	4.5	00.4 90 C	9.0	361.0 410.4	0.8	0.160	0.006
06/26/2013 11:30	4 0	90.7	J.4 3 0	419.4	0.8	0.166	0.004
06/26/2013 11:31	3.6	90.5	3.8	511 8	0.0	0,104	0.002
06/26/2013 11:32	3.2	88.9	4.1	511.8	0.6	0.151	0.003
06/26/2013 11:33	3.1	87.6	2.4	511.8	0.6	0.148	0.001
06/26/2013 11:34	3.4	86.2	10.5	511.8	0.6	0.149	0.007
06/26/2013 11:35	3.3	82.7	14.4	511.8	0.6	0.142	0.009
06/26/2013 11:36	3.7	84.5	12.2	511.8	0.6	0.149	0.008
06/26/2013 11:37	3.9	84.0	14.6	511.8	0.6	0.151	0.010
06/26/2013 11:38	3.3	85.8	9.9	511.8	0.6	0.147	0.006
06/26/2013 11:39	3.2	88.8	1.6	511.8	0.6	0.151	0.001
06/26/2013 11:40	3.1	88.3	3.2	511.8	0.6	0.149	0.002
06/26/2013 11:41	2,8	81.1	10.9	511.8	0.5	0.134	0.007
06/26/2013 11:42	3.2	02.2 93.1	14.0	511.0	0.5	0.141	0.009
06/26/2013 11:44	3 3	82 7	17.6	511 8	0.5	0,147	0.013
06/26/2013 11:45	3.5	88.5	5.5	511.8	0.0	0.142	0.011
06/26/2013 11:46	3.3	90.8	0.6	511.8	0.6	0 155	0.004
06/26/2013 11:47	3.3	83.3	2.6	511.8	0.5	0.143	0.002
06/26/2013 11:48	3.3	78.4	13.6	511.8	0.5	0.134	0.009
06/26/2013 11:49	3.6	73.7	25.6	511.8	0.5	0.129	0,017
06/26/2013 11:50	3.5	80.9	20.5	511.8	0.6	0.141	0.013
06/26/2013 11:51	3.4	85.6	13.6 ,	511.8	0.5	0.148	0.009
06/26/2013 11:52	3.5	86.7	12.9	511.8	0.5	0.151	0.008
06/26/2013 11:53	3.8	89.3	8.9	511.8	0.5	0.159	0.006
06/26/2013 11:54	3.7	89.2	7.7	511.8	0.6	0.157	0.005
06/26/2013 11:55	3.8	87.2	9.7	511.8	0.6	0.155	0.006
06/26/2013 11:50	4.0	00.3	6.Z	511.8	0.6	0.159	0.004
06/26/2013 11:58	39	97.8 90.0	5./ 1.8	511 8	0.6	0.162	0.003
06/26/2013 11:59	4.5	86.9	1.0	511 8	0.6	0.161	0.001
06/26/2013 12:00	4.4	73.8	0.0	511.8	0.0	0.138	0,000
06/26/2013 12:01	4.5	56.8	0.0	511.8	0.2	0.107	0.000
06/26/2013 12:02	4.5	16.4	5.6	511.8	0.0	0.031	0.004
06/26/2013 12:03	4.6	14.4	15.4	511.8	0.0	0.027	0.011
06/26/2013 12:04	4.4	16.8	15.0	511.8	0.0	0.031	0.010
06/26/2013 12:05	4.6	23.4	11.7	511.8	0.0	0.044	0.008
06/26/2013 12:06	4.6	26.6	10.0	511.8	0.0	0.050	0.007
06/26/2013 12:07	4.7	28.6	7.0	511.8	0.0	0.055	0.005
06/26/2013 12:08	4.9	31.2	5.9	511.8	0.0	0.061	0.004
06/26/2013 12:09	5.1	31.5	7.4	466.5	0.1	0.062	0.005
06/26/2013 12:10	5.1	33.2	5,4	400.4	0.1	0.066	0.004
06/26/2013 12:11	J.4 5 3	20.1	0.9	422.3	0.1	0.074	0.001
06/26/2013 12:12	5.0	33.6	0.4	JIZ.0 403 4	0.1	0.070	0.000
06/26/2013 12:14	5.0	32.8	0.5	511 8	0.1	0.066	0.000
06/26/2013 12:15	5.1	31.7	1.5	444.5	0.1	0.063	0.000
06/26/2013 12:16	4.9	31.5	1.6	462.1	0.1	0.061	0.001
06/26/2013 12:17	5.0	31.7	0.3	511.8	0,0	0.062	0.000
06/26/2013 12:18	5.2	30.9	0.0	470.7	0.0	0.062	0.000
06/26/2013 12:19	5.4	28.8	1.6	369,9	0.0	0.058	0.001
06/26/2013 12:20	5.5	29.4	0.4	437.8	0.0	0.060	0.000
06/26/2013 12:21	5.5	28.7	0.0	484.1	0.0	0.059	0.000
06/26/2013 12:22	4.9	26.1	0.0	481.8	0.0	0.051	0.000
RATA Run # 3					******		

Verified By:

CEMDAS(TM) Data Acquisition System

Created: 06/27/13 14:01

Unit 1

RATA Report For 6/26/2013, Hour 11:00

Time	02	NOX	NH3	CO	SO2	NOX	NH3
	%	PPM	PPM	PPM	PPM	lb/MBtu	lb/MBtu
Average Value	4.2	61.6	9.0	475.3	0.4	0.111	0.006

RATA Run # 3

Verified By:

RATA Report For 6/26/2013, Hour 11:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
06/26/2013 11:20	0.337	0.000	15.2	0.3	92.2	0.0
06/26/2013 11:21	0.358	0.000	14.0	1.3	97.1	0.0
06/26/2013 11:22	0.441	0.000	14.0	5.1	121.7	0.0
06/26/2013 11:23	0.500	0.000	16.1	7.9	141.8	0.1
06/26/2013 11:24	0.474	0.001	26.5	8.9	137.0	0.2
06/26/2013 11:25	0.507	0.001	31.3	8.5	145.4	0.3
06/26/2013 11:26	0.4/6	0.001	43.7	7°F	132.8	0.4
06/26/2013 11:28	0.301	0.002	47.0	0.0	111 5	0.4
06/26/2013 11:29	0.468	0,002	45.8	1.0	128.9	0.6
06/26/2013 11:30	0.536	0.002	46.2	0.6	151.3	0.6
06/26/2013 11:31	0.545	0.001	46.5	0.7	160.0	0.4
06/26/2013 11:32	0.529	0.001	46.7	0,8	163.8	0.4
06/26/2013 11:33	0.525	0.001	45.8	0.5	162.9	0.4
06/26/2013 11:34	0.537	0.001	45.3	2.0	163.6	0.4
06/26/2013 11:35	0.555	0.001	43.0	2.8	164.2	0.4
06/26/2013 11:37	0.558	0.001	43.2	2,5	160.0	0.4
06/26/2013 11:38	0.533	0.001	44.7	1.9	162.2	0.4
06/26/2013 11:39	0.529	0.001	46.1	0.3	161.8	0.4
06/26/2013 11:40	0.525	0.001	46.5	0.6	164.0	0.4
06/26/2013 11:41	0,514	0.001	42.9	2,1	164.7	0.4
06/26/2013 11:42	0.529	0.001	43.3	2.8	162.0	0.4
06/26/2013 11:43	0.550	0.001	43.2	3.7	162.0	0.4
06/26/2013 11:44	0.533	0.001	43.1	3.4	162.5	0.4
06/26/2013 11:45	0.541	0.001	45.9	L · L · 0 1	161.6	0.4
06/26/2013 11:47	0.533	0.001	43.6	0.5	163.1	0.4
06/26/2013 11:48	0.533	0.001	40.8	2.6	162.2	0.4
06/26/2013 11:49	0.545	0.001	37.9	4.8	160.0	0.4
06/26/2013 11:50	0.541	0.001	42.1	3.9	162.0	0.4
06/26/2013 11:51	0.537	0.001	44.3	2.6	161.1	0.4
06/26/2013 11:52	0.541	0.001	44.1	2.4	158.4	0.4
06/26/2013 11:53	0.554	0.001	46.1	1.7	160.7	0.4
06/26/2013 11.54 06/26/2013 11.55	0.550	0.001	45.5	1.4	158.9	0.4
06/26/2013 11:56	0.563	0.002	45.1	1.3	159.1	0,4
06/26/2013 11:57	0.576	0.002	45.3	0.7	160.7	0.4
06/26/2013 11:58	0.558	0.001	46.9	0.3	162.5	0.4
06/26/2013 11:59	0.586	0,002	46.9	0.0	168.0	0.4
06/26/2013 12:00	0.581	0.001	40.3	0.0.	170.3	0.3
06/26/2013 12:01	0.586	0.001	31.1	0.0	170.5	0.2
06/26/2013 12:02	0.586	0.000	9.0	1.1	170.3	0.0
06/26/2013 12.03	0.590	0,000	7.5	3.1	171.6	0.0
06/26/2013 12:05	0.590	0.000	13.0	2.4	172.9	0.0
06/26/2013 12:06	0.590	0.000	14.9	2.1	174.3	0.0
06/26/2013 12:07	0.595	0.000	16.1	1.5	175.4	0.0
06/26/2013 12:08	0.605	0.000	17.6	1.2	176.1	0.0
06/26/2013 12:09	0.561	0.000	17.7	1.5	159.7	0.1
06/26/2013 12:10	0.482	0.000	18.5	1.1	135.8	0.1
06/26/2013 12:11 06/26/2013 12:12	0.522	0.000	20.2	0.2	141.8	0.1
06/26/2013 12:12	0.305	0.000	12.2 12.7	U.1	176 3	U.L 0 1
06/26/2013 12:14	0.611	0.000	18.2	0.1	173.2	0.1
06/26/2013 12:15	0.535	0.000	17.8	0.3	151.6	0.1
06/26/2013 12:16	0.547	0.000	17.6	0.3	156.8	0.1
06/26/2013 12:17	0.611	0.000	17.7	0.1	173.8	0.0
06/26/2013 12:18	0.571	0.000	17.2	0.0	159.1	0.0
06/26/2013 12:19	0.457	0.000	16.0	0.3	125.0	0.0
06/26/2013 12:20	0.546	0.000	16.2	0.1	146.4	0.0
06/26/2013 12:21	0.603	0.000	10.U	0.0	164.4	0.0
RATA Run # 3	0.010	0.000	14.0	0.0	100.4	0.0

Verified By:

.

RATA Report For 6/26/2013, Hour 11:00

Time	CO	SO2	NOX	NH3	CO	SO2
	lb/MBtu	lb/MBtu	lb/hr	lb/hr	lb/hr	lb/hr
Average Value	0.530	0.001	32.4	1.7	154.0	0.3

RATA Run # 3
Verified By:

CEMDAS(TM) Data Acquisition System

RATA Report For 6/26/2013, Hour 13:00

Time	02 १	NOX PPM	NH3 PPM	CÔ PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/26/2013 13:30	5,4	28.1	4.7	223.5	0.0	0.057	0 004
06/26/2013 13:31	5,5	28.6	5.3	216.7	0.0	0.059	0.004
06/26/2013 13:32	5、6	29.9	4.1	198.7	0.0	0.062	0.003
06/26/2013 13:33	5.6	30.7	2.2	197.3	0.0	0.063	0.002
06/26/2013 13:34	5.3	31.2	0.5	235.0	0.0	0.063	0.000
06/26/2013 13:35	5.3	29.4	2.8	246.6	0.0	0.059	0.002
06/26/2013 13:36	5.2	29.1	4.9	252.5	0.0	0.058	0.004
06/26/2013 13:37	5.1	30.0	3.7	354.8	0.0	0.059	0.003
06/26/2013 13:38	5.3	30.8	2.8	337.3	0.0	0.062	0.002
06/26/2013 13:39	5.3	31.0	0.8	345.5	0.0	0.062	0.001
06/26/2013 13:40	5.2	31.3	0.9	298.6	0.0	0.062	0.001
06/26/2013 13:41 06/26/2012 12:42	5.4	29.9	4.0	275.9	0.0	0.061	0.003
06/26/2013 13:42 06/26/2013 13.42	5.5	30.4	4.1 2.2	226.7	0.0	0.062	0.003
06/26/2013 13.44	5.7	31.0	2.5	212.2	0.0	0.065	0.002
06/26/2013 13:45	5.5	30.8	1.2	234.5	0.0	0.063	0.001
06/26/2013 13:46	5.6	. 30 5	1 0	195 5	0.0	0.003	0.000
06/26/2013 13:47	5.6	28.1	3.1	194.2	0.0	0.058	0.001
06/26/2013 13:48	5,7	28.7	2,6	193.2	0,0	0.060	0.002
06/26/2013 13:49	5.7	28.6	2.2	179.0	0.0	0.060	0.002
06/26/2013 13:50	5.5	28.6	1.9	207.0	0.0	0.059	0.001
06/26/2013 13:51	5,5	28.1	4.3	201.3	0.0	0.058	0.003
06/26/2013 13:52	5.6	26.9	6.5	203.5	0.0	0.056	0.005
06/26/2013 13:53	5.6	29.2	4.4	191.4	0.0	0.060	0.003
06/26/2013 13:54	5.6	29.8	2.7	178.4	0.0	0.062	0.002
06/26/2013 13:55	5.7	30.1	1.3	197.5	0.0	0.063	0.001
06/26/2013 13:56	5.5	29.6	0.4	191.4	0.0	0.061	0.000
06/26/2013 13:57	5.3	27.7	2.4	162.4	0.0	0.056	0.002
06/26/2013 13:58	5.2	26.6	6.8	175.9	0.0	0.053	0.005
06/26/2013 13:59	5.4	27.9	7.1	205.2	0.0	0.057	0.005
06/26/2013 14:00 06/26/2013 14:00	5,4	30.L	3.9	216.4	0.0	0.061	0.003
06/26/2013 14:01	5.5 E E	31.3	2.0	249.5	0.0	0.064	0.002
06/26/2013 14.02	5.9	30.0	3.0	270 7	0.0	0.063	0.003
06/26/2013 14:04	5.5	32.9	0.0	256.2	0.0	0.000	0.003
06/26/2013 14:05	5,5	30.0	4.0	185.7	0.0	0.061	0.000
06/26/2013 14:06	5.6	28.2	9.2	196.9	0.1	0,058	0.007
06/26/2013 14:07	5.5	31.9	3.6	204.4	0.1	0,065	0.003
06/26/2013 14:08	5.5	32.7	6.1	177.7	0.1	0.067	0.005
06/26/2013 14:09	5.6	33.2	7.6	178.9	0.1	0.069	0.006
06/26/2013 14:10	5.5	35.6	4.2	163.9	0.1	0.073	0.003
06/26/2013 14:11	5.4	36.8	1.9	175.8	0.1	0.075	0.001
06/26/2013 14:12	5,4	37.0	0.8	229.6	0.1	0.075	0.001
06/26/2013 14:13	5.3	36.5	1.3	216.8	0.1	0.073	0.001
06/26/2013 14:14	5.5	35.2	3.1	221.9	0.0	0.072	0.002
06/26/2013 14:15	5.7	35.9	0.9	204.4	0.1	0.075	0.001
06/26/2013 14:15	5.9	36.5	0.0	189.6	0.1	0.077	0.000
06/26/2013 14:17	5.9	35.0	0.0	223.9	0,1	0.074	0.000
06/26/2013 14:19	5.7	22.0	0.4	21/.2 105 5	0.1	0.070	0.000
06/26/2013 14.19	J./ 5.5	30.8	2.7	200 5	0.1	0.066	0.002
06/26/2013 14:21	5 5	32 0	3.0	200.5	0.0	0.063	0.003
06/26/2013 14:22	5.4	31.8	5.9 6 0	237 5	0.0	0.000	0.002
06/26/2013 14:23	5.5	32.5	5.8	275.6	0.0	0,067	0.004
06/26/2013 14:24	5.4	34.8	3.2	222.0	0.1	0.071	0.002
06/26/2013 14:25	5.3	35.2	2.1	208.1	0.0	0.071	0.002
06/26/2013 14:26	5.1	35.0	0.5	249.1	0.0	0.069	0.000
06/26/2013 14:27	4.9	34.5	0.1	331.3	0.0	0.067	0.000
06/26/2013 14:28	4.9	33.3	0.4	411.2	0.0	0.065	0.000
06/26/2013 14:29	4.7	32.5	0.1	497.7	0.0	0.062	0.000
06/26/2013 14:30	4.6	30.5	0.4	511.8	0.0	0.058	0.000
06/26/2013 14:31	4.6	29.4	1.0	511.8	0.0	0.056	0.001
06/26/2013 14:32	4.8	28.5	0.5	511.8	0.0	0.055	0.000
06/26/2013 14:33	4.8	27.7	1.2	511.8	0.0	0.053	0.001
KAIA KUN # 4							

Verified By:

RATA Report For 6/26/2013, Hour 13:00

Time	02 ४	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
*******						********	
00/00/0010 14 04							
06/26/2013 14:34	4.9	26.2	2.1	497.3	0.0	0.051	0.002
06/26/2013 14:35	4.9	26.4	1.4	421.3	0.0	0.051	0.001
06/26/2013 14:36	4.8	25.3	3.5	394.8	0.0	0.049	0.002
06/26/2013 14:37	4.9	25.5	2.8	510.3	0.0	0.050	0.002
06/26/2013 14:38	5.1	26.0	2.4	441.2	0.0	0.051	0.002
06/26/2013 14:39	5.6	25.8	1,6	392.2	0.0	0.053	0.001
06/26/2013 14:40	5.3	25.6	0.0	331.6	0.0	0.051	0.000
06/26/2013 14:41	5.4	22.9	2.5	305.8	0.0	0.046	0.002
06/26/2013 14:42	5.5	22.1	4.8	323.3	0.0	0.045	0.004
06/26/2013 14:43	5.4	23.2	3.5	319.8	0.0	0.047	0.003
06/26/2013 14:44	5.7	23.0	3.5	328.8	0.0	0.048	0.003
06/26/2013 14:45	5.6	23.0	1.6	361.3	0.0	0.048	0.001
06/26/2013 14:46	5.8	23.4	2.1	268.0	0.0	0.049	0.002
06/26/2013 14:47	5.8	20.9	4.9	227.0	0.0	0.044	0.004
06/26/2013 14:48	5.7	21.8	4.2	221.5	0.0	0.045	0.003
06/26/2013 14:49	5.6	21.9	3.5	248.1	0.0	0.045	0.003
06/26/2013 14:50	5,6	21.8	2.6	313.9	0.0	0.045	0.002
06/26/2013 14:51	5.4	21.2	3.3	321.9	0.0	0.043	0.002
06/26/2013 14:52	5.6	21.0	5.3	316.5	0.0	0.043	0.004
06/26/2013 14:53	5.7	20.8	5.4	289.9	0.0	0.043	0.004
06/26/2013 14:54	5.8	21.5	4.0	264.9	0.0	0.045	0.003
06/26/2013 14:55	5.9	21.5	3.6	241.6	0.0	0.046	0.003
06/26/2013 14:56	5.8	21.0	2.7	254.1	0.0	0.044	0.002
06/26/2013 14:57	5.6	20.6	3.4	211.3	0.0	0.043	0.003
06/26/2013 14:58	5.5	19.6	5.0	240.3	0.0	0.040	0.004
06/26/2013 14:59	5.4	19.7	5.8	266.3	. 0.0	0.040	0.004
06/26/2013 15:00	5.4	20.3	6.0	284.1	0.0	0.041	0.004
06/26/2013 15:01	5.6	20.1	6.6	312.2	0.0	0.042	0.005
06/26/2013 15:02	5,5	21.5	4.5	288.9	0.0	0.044	0.003
06/26/2013 15:03	5.5	21.0	4.5	284.3	0.0	0.043	0.003
06/26/2013 15:04	5.5	20.4	7.4	245.5	0.0	0,042	0.006
06/26/2013 15:05	5,4	21.9	6.8	296.2	0.0	0.044	0.005
06/26/2013 15:06	5.4	23.8	5.0	391.1	0.0	0.048	0.004
06/26/2013 15:07	5.4	24.4	3.0	398.2	0.0	0.050	0.002
06/26/2013 15:08	5.4	24.1	3.5	317.5	0.0	0.049	0.003
06/26/2013 15:09	5.5	23.6	4.3	292.6	0.0	0.048	0.003
06/26/2013 15:10	5.4	23.8	4.3	292.6	0.0	0.048	0.003
06/26/2013 15:11	5.2	23.9	4.2	395.3	0.0	0.048	0.003
06/26/2013 15:12	5.2	23.7	2.9	443.1	0.0	0.047	0 002
06/26/2013 15:13	5.1	23.9	2 7	475 6	0 0	0 047	0 002
06/26/2013 15:14	5.3	22.5	5.1	488 2	0.0	0 045	0 004
06/26/2013 15:15	5.5	22.9	5.6	405 8	0 0	0 047	0 004
06/26/2013 15:16	5.5	24.0	3.1	309 6	0 0	0.049	0.002
06/26/2013 15:17	5.5	23 7	27	324 6	0.0	0 049	0.002
06/26/2013 15.18	5.2	23.7	2.0	438 0	0.0	0.046	0.002
06/26/2013 15.19	5.1	22.2	20	470 9	0.0	0.045	0.001
06/26/2013 15.20	4 9	22.0	2.0	511 8	0.0	0.043	0.002
06/26/2013 15.21		22.2	2 C	511 0	0.0	0.043	0.005
06/26/2013 15.22	5.1	22.0	ン・O イ つ	511 0	0.0	0.043	0.003
06/26/2013 15.22	, 2 5 5	21.3	+,) 7)	→±±.0 511 1	0.0	0.044	0.003
06/26/2013 15.24	2.3 E E	44.J JJ 1	4.J 0 1	211.1	0.0	0.046	0.002
06/26/2013 15:24	5.5 E C	22.1	4.L	427.0	0.0	0.045	0.002
06/26/2013 15-26	5.6	20.9	4.3	324.⊥ 370 4	0.0	0.043	0.003
00/20/2010 10:20	⊃.0		5.1	2/9.4	0.0	U.U43	0.004
Average Value	5.4	27.3	3.2	293.9	0.0	0.056	0.002

RATA Run # 4

Verified By:

CEMDAS(TM) Data Acquisition System

Page 2 of 4

RATA Report For 6/26/2013, Hour 13:00

Time	CO	SO2	NOX	NH3	co	S02
Time	ID/MBCU	10/MBtu	lb/hr	1b/hr	lb/hr	lb/hr
06/26/2013 13:30	0.276	0.000	15.6	1.0	75,6	0.0
06/26/2013 13:31	0.270	0.000	15.9	1.1	73.4	0.0
06/26/2013 13:32	0.250	0.000	16.4	0.8	66.2	0.0
06/26/2013 13:33	0.248	0.000	17.0	0.4	66.6	0.0
06/26/2013 13:34	0.288	0.000	17.2	0.1	78.9	0.0
06/26/2013 13:35	0.302	0.000	16.3	0,6	83.1	0.0
06/26/2013 13:30	0.306	0.000	16.U 16.5	1,0	84.6 110 E	0.0
06/26/2013 13:38	0.413	0.000	16.9	0.7	112 9	0.0
06/26/2013 13:39	0.423	0.000	17.3	0.2	117.1	0.0
06/26/2013 13:40	0.362	0.000	17.4	0.2	101.2	0,0
06/26/2013 13:41	0.341	0.000	16.7	0.8	93.6	0.0
06/26/2013 13:42	0.282	0.000	17.1	0.9	77.7	0.0
06/26/2013 13:43	0.267	0.000	17.5	0.5	72.3	0.0
06/26/2013 13:44	0.297	0.000	17.4	0.2	79.9	0.0
06/26/2013 13.45	0.304	0.000	17 0	0.0	82.7	0.0
06/26/2013 13:47	0.244	0.000	15.7	0.2	66.1	0.1
06/26/2013 13:48	0.245	0.000	16.0	0.5	65.6	0.0
06/26/2013 13:49	0.227	0.000	16.1	0.5	61.3	0.0
06/26/2013 13:50	0.258	0.000	16.2	0.4	71.6	0.0
06/26/2013 13:51	0.251	0.000	16.0	0.9	69.8	0.0
06/26/2013 13:52	0.256	0.000	15.2	1.4	70.1	0.0
06/26/2013 13:53	0.241	0.000	16.4	0.9	65.3	0.0
06/26/2013 13:54	0,224	0.000	16.7	0.6	60.8	0.0
-06/26/2013 13:55	0.251	0.000	16.8	0.3	67.1 65 0	0.0
06/26/2013 13:57	0.199	0.000	15.5	0.5	55.0	0.0
06/26/2013 13:58	0.213	0.000	15.0	1.4	60.2	0.0
06/26/2013 13:59	0.253	0.000	15.8	1.5	70.7	0.0
06/26/2013 14:00	0.267	0.000	16.8	0.8	73.7	0.0
06/26/2013 14:01	0.311	0.000	17.6	0.4	85.5	0.0
06/26/2013 14:02	0.248	0.000	17.6	0.8	69.3	0.0
06/26/2013 14:03	0.350	0.000	17.7	0.8	93.5	0.0
06/26/2013 14:04	0.319	0.000	18.7	0.0	88.6	0.0
06/26/2013 14:06	0.248	0.000	16 0	19	63.7	0.0
06/26/2013 14:07	0.255	0.000	18.2	0,8	70.9	0.1
06/26/2013 14:08	0.221	0.000	18.6	1.3	61.4	0.1
06/26/2013 14:09	0.225	0.000	18.8	1.6	61.6	0.1
06/26/2013 14:10	0.204	0.000	20.1	0.9	56.2	.0.1
06/26/2013 14:11	0.217	0.000	21.0	0.4	60.9	0.1
06/26/2013 14:12 06/26/2013 14:12	0.284	0.000	21.2	0.2	80.1	0.1
06/26/2013 14:13 06/26/2013 14:14	0.265	0.000	20.9	0.3	75.6	0.1
06/26/2013 14:15	0.259	0.000	20.1	0.7	77.0	0.0
06/26/2013 14:16	0,245	0.000	20.8	0.0	65.6	0.1
06/26/2013 14:17	0.289	0.000	19.8	0.0	77.2	0.1
06/26/2013 14:18	0.276	0.000	19.1	0.1	75.2	0.1
06/26/2013 14:19	0.235	0.000	18.1	0.6	64.5	0.1
06/26/2013 14:20	0.250	0.000	17.7	0.8	70.0	0.0
06/26/2013 14:21	0.271	0.000	18.2	0.7	75.1	0.0
06/26/2013 14:22	0.293	0.000	18.0	1.3	81.9	0.0
06/26/2013 14:23	0.343 0 774	0.000	10.1 10.2	1.2	93.2	0.0
06/26/2013 14:25	0.255	0.000	19.5	0.7	/4,9 68 7	0.1
06/26/2013 14:26	0.300	0.000	19.0	0.1	82.3	0.0
06/26/2013 14:27	0.392	0.000	18.8	0.0	110.1	0.0
06/26/2013 14:28	0.486	0.000	18.2	0.1	136.8	0.0
06/26/2013 14:29	0.579	0.000	17.6	0.0	164.1	0.0
06/26/2013 14:30	0.590	0.000	16.4	0.1	167.1	0.0
06/26/2013 14:31	0.590	0.000	15.7	0.2	166.0	0.0
06/26/2013 14:32	0.600	0.000	15.3	0.1	167.1	0.0

Verified By:

RATA Run # 4

.

Page 3 of 4

Unit 1

RATA Report For 6/26/2013, Hour 13:00

<i>mime</i>	CO	SO2	NOX	NH3	CO	S02
Time	ID/MBtu	ID/MBtu	1b/hr	lb/hr	lb/hr	lb/hr
						~~~
06/26/2012 14.22	0 600	0 000	1	0 0	160.0	0.0
06/26/2013 14:33	0.600	0.000	15.0	0.2	168.3	0.0
06/26/2013 14:34	0,588	0.000	14.3	0.4	165.0	0.0
06/26/2013 14:35	0.498	0.000	14.5	0.3	141.1	0.0
06/26/2013 14:30	0.463	0.000	14.0	0.7	133.1	0.0
06/26/2013 14:37	0.604	0.000	14.3	0.6	174.4	0.0
06/26/2013 14:38	0.531	0.000	14.6	. 0.5	150.6	0.0
06/26/2013 14:39	0.493	0.000	14.5	0.3	134.2	0.0
06/26/2013 14:40	0.406	0.000	14.4	0.0	113.6	0.0
06/26/2013 14:41	0.378	0.000	13.1	0.5	106.4	0.0
06/26/2012 14.42	0.403	0.000	12.6	1.0	112.5	0.0
06/26/2013 14:43	0.395	0.000	13.4	0.7	112.4	0.0
06/26/2013 14:44	0.417	0.000	13.3	0.7	115.4	0.0
06/26/2013 14:45	0.454	0.000	13.2	0.3	126.2	0.0
06/26/2013 14:40	0.343	0.000	13.4	0.4	93.2	0.0
06/26/2013 14:47	0.291	0.000	11.9	1.0	78.6	0.0
06/26/2013 14:48	0.281	0.000	12.3	0.9	76.1	0.0
06/26/2013 14:49	0.312	0.000	12.5	0.7	85.9	0.0
06/26/2013 14:50	0.395	0.000	12.5	0.6	109.8	0.0
06/26/2013 14:51	0.398	0.000	12.4	0.7	114.4	0.0
06/26/2013 14:52	0.398	0.000	12.1	1.1	111.2	0.0
06/26/2013 14:53	0.368	0.000	12.0	1.1	101.6	0.0
06/26/2013 14:54	0.339	0.000	12.3	0.8	92.5	0.0
06/26/2013 14.55	0.312	0.000	12.2	0.8	83.7	0.0
06/26/2013 14:50	0.325	0.000	11 7	0.6	86.5	0.0
06/26/2013 14:58	0.200	0.000	11 0	0.7	/2.8	0.0
06/26/2013 14:50	0.299	0.000	11.0	1.0	82.4	0.0
06/26/2013 15:00	0.325	0.000	11 3	1.2	96 5	0.0
06/26/2013 15:00	0.331	0.000	11 2	1.2	96.5 106.6	0.0
06/26/2013 15.02	0.350	0.000	12 0	1.4	100.0	0.0
06/26/2013 15:03	0,354	0.000	11 7	0.9	96 1	0.0
06/26/2013 15:04	0.306	0.000	11 3	1 5	82 7	0.0
06/26/2013 15:05	0.366	0.000	12.1	1 4	99 8	0.0
06/26/2013 15:06	0.483	0.000	13.2	1 0	132 3	0.0
06/26/2013 15:07	0.492	0.000	13.5	0.6	134 4	0.0
06/26/2013 15:08	0.392	0.000	13.4	0.7	107.1	0.0
06/26/2013 15:09	0.365	0.000	13.1	0.9	98 5	0.0
06/26/2013 15:10	0.361	0.000	13.3	0.9	99.3	0.0
06/26/2013 15:11	0.480	0.000	13.3	0.9	133.4	0 0
06/26/2013 15:12	0.538	0.000	13.4	0.6	152.0	0.0
06/26/2013 15:13	0.572	0.000	13.5	0.6	163.8	0.0
06/26/2013 15:14	0.598	0.000	12.7	1.1	168.0	0.0
06/26/2013 15:15	0,506	0.000	12.7	1.1	137.3	0.0
06/26/2013 15:16	0.386	0.000	13.2	0.6	103.8	0.0
06/26/2013 15:17	0.404	0.000	12.9	0.5	107.8	0.0
06/26/2013 15:18	0.532	0.000	12.8	0.4	146.9	0.0
06/26/2013 15:19	0.567	0.000	12.6	0.5	157.9	0.0
06/26/2013 15:20	0.605	0.000	12.1	0.7	172,7	0.0
06/26/2013 15:21	0.616	0.000	12.2	0.8	172.7	0.0
06/26/2013 15:22	0.621	0.000	12.1	0.9	172.3	0.0
06/26/2013 15:23	0.637	0.000	12.3	0.5	172.3	0.0
06/26/2013 15:24	0.532	0.000	12.2	0.4	143.9	0.0
06/26/2013 15:25	0,407	0.000	11.5	0.9	108.2	0.0
06/26/2013 15:26	0.351	0.000	11.2	1.0	92.7	0.0
Average Value	0.362	0.000	15.3	0.7	99.9	0.0

RATA Run # 4

Verified By:

CEMDAS(TM) Data Acquisition System
### RATA Report For 6/27/2013, Hour 08:00

Time	02 %	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/27/2013 08:20	5.8	45.2	1,8	378.3	0.2	0.095	0.001
06/27/2013 08:21	5.4	45.3	0.0	421.0	0.1	0.092	0.000
06/27/2013 08:22	5.1	38.7	2.6	299.6	0.1	0.077	0.002
06/27/2013 08:23	5.3	34.5	9.4	280.1	0.1	0.069	0.007
06/27/2013 08:24	5.1	37.9	6.3	275.4	0.1	0.075	0.005
06/27/2013 08:25	5.2	40.2	6.2	235.0	0,1	0.080	0.005
06/27/2013 08:26	5.1	40.6	5.9	207.0	0.1	0.080	0.004
06/27/2013 08:27	⊃.∠ ⁄ 9	42.0	2.3	2/8./	0.1	0.085	0.002
06/27/2013 08:20	4.9	43.5	0.8	306.L	0.2	0.084	0.001
06/27/2013 08:30	4.9	40.4	2.3	455.8	0.2	0.000	0.001
06/27/2013 08:31	4.9	39.7	1.9	423.3	0.2	0.077	0,001
06/27/2013 08:32	4.9	40.1	0.6	511.8	0.1	0.078	0.000
06/27/2013 08:33	4.9	39,6	1.3	511.8	0.1	0.077	0.001
06/27/2013 08:34	5.0	38.8	3.3	451.3	0.1	0.076	0.002
06/27/2013 08:35	5.2	38.9	1.9	441.7	0.1	0.078	0.001
06/27/2013 08:36	5.1	39.5	2.0	296.1	0.1	0.078	0.001
06/27/2013 08:37	5.0	38.6	5.7	222.2	0.1	0.076	0.004
06/27/2013 08:39	5.0 4 9	39.0 41.8	2.9	251.5 414 7	0.1	0.078	0.004
06/27/2013 08:40	4.9	42.4	0 4	392 4	0.1	0.081	0.002
06/27/2013 08:41	4.8	41.0	1.3	435.0	0.1	0.079	0.001
06/27/2013 08:42	4.9	40.5	2.1	511,8	0.1	0.079	0,002
06/27/2013 08:43	4.9	40.7	0.6	462.6	0.1	0.079	0.000
06/27/2013 08:44	4.9	40.5	1.3	434.7	0.1	0.079	0.001
06/27/2013 08:45	5.0	38.0	5.6	395.2	0.1	0.074	0.004
06/27/2013 08:46	• 4.9	39.8	3.7	407.2	0.0	• 0.077	0.003
06/27/2013 $08:47$	5.1	40.6	1.7	429.0	0.0	0.080	0.001
06/27/2013 08:48	5.2	39.9	1.9	342.7	0.1	0.080	0.001
06/27/2013 08:50	5.0	40 0	3.0	251.5	0.1	0.080	0.004
06/27/2013 08:51	5,7	41.3	0.0	288.9	0.1	0.086	0.002
06/27/2013 08:52	5.5	39.6	0.9	1,92,5	0.1	0.081	0.001
06/27/2013 08:53	5.6	35.6	6.7	160.0	0.1	0.074	0,005
06/27/2013 08:54	5.6	37.7	5.5	219.7	0.1	0.078	0.004
06/27/2013 08:55	5.6	40.8	0.0	280.3	0.1	0.084	0.000
06/27/2013 08:56	5.7	38.9	0.3	204.4	0.0	0.081	0.000
06/27/2013 08:57	5.4	36.0	4.1	172.4	0.1	0.073	0.003
06/27/2013 08:58	5,5	30.0	4.6	220.6	0.1	0.075	0.003
06/27/2013 09:00	5.2	37.8	7.9	161 1	0.1	0.074	0.004
06/27/2013 09:01	5.1	37.9	10.2	173.0	0.1	0.075	0.007
06/27/2013 09:02	5.2	41.2	6.4	235.0	0.1	0,082	0.005
06/27/2013 09:03	5.3	44.0	0.9	222.3	0.1	0.089	0.001
06/27/2013 09:04	5.4	44.6	0.0	240.4	0.1	0.091	0.000
06/27/2013 09:05	5.4	43.4	1.1	214.4	0.1	0.088	0.001
06/27/2013 09:06	5.6	42.2	1.5	282.7	0.2	0.087	0.001
06/27/2013 09:07	5.4	42.0	1.1	239.3	0.1	0.085	0.001
06/27/2013 09:08	5.6	39 8	⊃.3 7 9	216.4	0.1	0.082	0.004
06/27/2013 09:10	5.8	42.5	2.2	207.2	0.1	0.082	0.008
06/27/2013 09:11	5.8	43.3	0.7	209.8	0.1	0.091	0.002
06/27/2013 09:12	5.7	41.2	5.0	169.8	0.1	0.086	0.004
06/27/2013 09:13	5.7	40.9	8.2	169.3	0.1	0.085	0.006
06/27/2013 09:14	5.7	43.6	3.6	225.7	0.1	0.091	0.003
06/27/2013 09:15	5.9	45.5	0.8	190.6	0.1	0.097	0.001
06/27/2013 09:16	5.9	42.4	5.4	161.1	0.2	0.090	0.004
06/27/2013 09:17 06/27/2013 00:19	6.0	44.0	6.4	171.7	0.2	0.094	0.005
06/27/2013 09:18	6.1 6.1	46.U 46.7	L.U	231.5	0.1	0.099	0.000
06/27/2013 09:20	5,0 6 0	10.1 47 R	0.3	155,4 155 Q	U, I 0 1	0.700	0.000
06/27/2013 09:21	6.3	44.7	4.4	182.0	0.1	0.099	0.003
06/27/2013 09:22	6.2	46.7	0.0	303.0	0.1	0.102	0.000
06/27/2013 09:23	6.3	45.0	1.2	190.5	0.1	0.099	0.001
RATA Run # 5							

Verified By:

### RATA Report For 6/27/2013, Hour 08:00

Tir	ne	02 %	NOX PPM	NH3 DPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
0.5 /0.7 /0.01.2		<i>c</i> ,	10.0	~ ~	104 5			
06/27/2013 06/27/2013	09:24	6.4	40.2	7.8	184.7	0.1	0.089	0.006
06/27/2013	09:25	6.5	44 5	4.9	206 1	0.1	0.097	0.004
06/27/2013	09:27	6,3	44.1	1.7	153.0	0.0	0,100	0.001
06/27/2013	09:28	6.1	41.0	8.3	157.1	0.0	0.089	0.007
06/27/2013	09:29	6.3	43.4	7.4	190.7	0.1	0.096	0.006
06/27/2013	09:30	б.3	47.0	0.2	253.8	0.1	0.104	0.000
06/27/2013	09:31	6.6	47.9	0.1	209.9	0.1	0.109	0.000
06/2//2013	09:32	6.7	45.6	2.3	190.0	0.1	0,105	0.002
06/27/2013	09.33	6.6	40.1	2.6	155 9	0.2	0,106	0.003
06/27/2013	09:35	6.5	46.9	1.4	200.8	0.2	0.105	0.002
06/27/2013	09:36	6.2	47.1	1.3	164.0	0.1	0,103	0,001
06/27/2013	09:37	6.0	43.1	9.5	121.9	0.1	0.092	0.008
06/27/2013	09:38	6.0	45.7	11.9	122.2	0.1	0,098	0.009
06/27/2013	09:39	6.1	50.5	6.8	120.9	0.3	0.109	0.005
06/27/2013	09:40	6,0	53.3	3.1	132.4	0.3	0.114	0.002
06/27/2013	09:41	5.8	54.2 52.1	0.8	1/6.1	0.4	0.114	0.001
06/27/2013	09:42	5.7	49 1	3./ 11.8	138.8	0.3	0,109	0.003
06/27/2013	09:44	5,7	54.0	6.8	155.4	0.3	0.113	0.005
06/27/2013	09:45	5.9	57.2	1.7	146.1	0.3	0.121	0.001
06/27/2013	09:46	5.9	57.5	0.4	173.3	0.3	0.122	0.000
06/27/2013	09:47	5.7	57.0	0.3	150.4	0.3	0.119	0.000
06/27/2013	09:48	5.8	51.9	7.0	140.4	0.3	0.109	0.005
06/27/2013	0.9:49	5.7	53.6	7.4	140.6	0.3	0.112	0.006
06/27/2013	09:50	5./	55.9	5.2	148.5	0.3	0.117	0.004
06/27/2013	09.52	5.8	59.3	2.0	255 5	0.3	0.122	0.002
06/27/2013	09:53	5.9	55,8	0.5	161.5	0.3	0.118	0.000
06/27/2013	09:54	5.9	50.3	7.4	164.2	0.3	0.107	0.006
06/27/2013	09:55	5.9	53.8	4.2	148.4	0.3	0.114	0.003
06/27/2013	09:56	5.8	54.3	4.8	142.3	0.3	0.114	0.004
06/27/2013	09:57	5.8	55.8	2.7	179.6	0.3	0.117	0.002
06/27/2013	09:58	5.8	56.7	0.0	174.3	0.3	0.119	0.000
06/27/2013	10.00		53.0	3.5	150.6	0.3	0.113	0.003
06/27/2013	10:00	6.0	55.3	2.6	165.8	0.3	0.119	0 002
06/27/2013	10:02	6.0	56.1	1.3	163.6	0.3	0,120	0.001
06/27/2013	10:03	5.8	56.0	0.0	253.4	0.4	0,118	0.000
06/27/2013	10:04	5.7	55.5	0.0	189.7	0.3	0.116	0.000
06/27/2013	10:05	5.7	51.5	4.4	176.6	0.3	0.107	0.003
06/27/2013	10:06	6.0	53.2	4.8	174.1	0.4	0.114	0.004
06/27/2013	10:07	6,U 6 0	54.7	1.5	168.1	0.3	0.117	0.001
06/27/2013	10:00	5.8	54.6	0.5	180 6	0.3	0,118	0.000
06/27/2013	10:10	5.8	52.4	2.9	161,9	0.3	0.110	0.002
06/27/2013	10:11	5.8	51.3	7.0	151.8	0.3	0.108	0.005
06/27/2013	10:12	5.9	52.0	6.9	169.8	0.3	0.110	0.005
06/27/2013	10:13	6.3	54.5	2.9	201.9	0.4	0.120	0.002
06/27/2013	10:14	6.7	55.9	0.0	237.0	0.3	0.128	0.000
06/27/2013	10:15	6.5	54.8	0.0	350.2	0.3	0.123	0.000
06/27/2013	10:16	6.2	49.5	3.2 1/1	165.1	0.1	0.108	0.003
06/27/2013	10:18	6.2	48.9	10.7	136. P	0.1 01	0.093	0.011
06/27/2013	10:19	6.0	53,3	4.1	133.6	0.2	0.114	0.003
06/27/2013	10:20	6.3	53.6	1.7	185.2	0.3	0,118	0.001
06/27/2013	10:21	6.2	55.0	0.0	203.8	0.3	0.120	0.000
06/27/2013	10:22	6.3	51.4	. 2.3	151.6	0.3	0.113	0.002
06/27/2013	10:23	6.2	48.1	8.7	143.6	0.3	0.105	0.007
06/27/2013	10:24	6.3	50.7	6.4	148.0	0.3	0.112	0.005
06/2//2013	10:25	6.2	52.8	3.1	146.2	0.1	0.115	0.002
RATA Run #	5							

Verified By:

Created: 06/27/13 14:03 Unit 1

### RATA Report For 6/27/2013, Hour 08:00

Time	02	NOX	NH3	CO	SO2	NOX	NH3
	%	PPM	PPM	PPM	PPM	lb/MBtu	lb/MBtu
Average Value	5.7	46.1	3.5	229.0	0.2	0.097	0.003

RATA Run # 5

Verified By:

_____ CEMDAS(TM) Data Acquisition System

Page 3 of 6

## 

#### RATA Report For 6/27/2013, Hour 08:00

Time	CO 15/MBtu	SO2	NOX	NH3 Jb/br	CO Jh (hr	SO2
11me	TD/MDCu		110/111 	1D/III		10/111
06/27/2013 08:20	0.484	0.001	25.8	0.4	131.3	0.2
06/27/2013 08:21	0.520	0.000	25.5	0.0	144.1	0.1
06/27/2013 08:22	0.360	0.000	21.7	0.5	102.4	0.1
06/27/2013 08:23	0.343	0.000	19.3	1.9	95.4	0.1
06/27/2013 $08:24$	0.331	0.000	∠⊥,4 20 ⊑	13	94.6	0.1
06/27/2013 08:26	0.249	0.000	22.5	1.3	50.2 70.8	0.1
06/27/2013 08:27	0.338	0.000	23.9	0.5	95.0	0.1
06/27/2013 08:28	0.362	0,001	24.4	0.2	104.8	0.2
06/27/2013 08:29	0.490	0.001	22.8	0.2	139.9	0.2
06/27/2013 08:30	0.539	0.001	22.4	0.5	154.0	0.2
06/27/2013 08:31	0.501	0.001	22.1	0.4	143.6	0.2
06/2//2013 08:32	0.605	0.000	22.5	0.1	174.7	0.1
06/27/2013 $08:33$	0.605	0.000	22.2	0.3	152 1	0.1
06/27/2013 08:35	0.536	0.000	21.0	0.7	148 3	0.1
06/27/2013 08:36	0.356	0.000	21.3	0.4	99.2	0.1
06/27/2013 08:37	0.265	0.000	21.3	1.2	74.7	0.1
06/27/2013 08:38	0.300	0.000	22.2	1.2	85.5	0.1
06/27/2013 08:39	0.491	0.000	23.6	0.5	142.5	0.1
06/27/2013 08:40	0.464	0.000	24.1	0.1	135.5	0.1
06/27/2013 08:41	0.510	0.000	23.4	0.3	151.0	0.1
06/27/2013 08:42	0.605	0.000	23.0	0.4	176.5	0.1
06/27/2013 $08:43$	0.547	0.000	23.4 23.2	0.1	162.0	0.1
06/27/2013 08:45	0.471	0.000	21.7	1 2	137 5	0.1
06/27/2013 08:46	0.482	0.000	22.9	0.8	142.4	0.0.
06/27/2013 08:47	0.516	0.000	23.2	0.4	149.3	0.0
06/27/2013 08:48	0.416	0.000	22.6	0.4	118.0	0.1
06/27/2013 08:49	0.316	0.000	21.9	1.2	86.6	0.1
06/27/2013 08:50	0.277	0.000	22.4	0.6	74.4	0.1
06/27/2013 08:51	0.367	0.000	23.0	0.0	98.0	0.1
06/27/2013 08:52	0.240	0.000	21.9	0.2	64.7 53 5	0.1
06/27/2013 08:55	0.201	0.000	20.7	1.4	23.2 73.3	0.1
06/27/2013 08:55	0.352	0.000	22.0	0.0	91.8	0.1
06/27/2013 08:56	0.259	0.000	20.7	0.1	66.3	0.0
06/27/2013 08:57	0.213	0.000	19.2	0.8	55.9	0.1
06/27/2013 08:58	0.275	0.000	19.6	0.9	71.9	0,1
06/27/2013 08:59	0.221	0.000	20.0	1.1	59.7	0.1
06/27/2013 09:00	0.196	0.000	20.4	1.6	52.8	0.1
06/27/2013 09:01	0.208	0.000	20.6	2.0	57.3	0.1
06/27/2013 09:02 06/27/2013 09:03	0.205	0.000	22.5	1.3	/8.3	0.1
06/27/2013 09:04	0.297	0.000	24.0	0.2	80.0	0.1
06/27/2013 09:05	0.265	0.000	23.4	0.2	70.3	0.1
06/27/2013 09:06	0.355	0.001	23.0	0.3	93.7	0.2
06/27/2013 09:07	0.296	0.000	23.1	0.2	80.2	0.1
06/27/2013 09:08	0.272	0.000	21.8	1.1	72.8	0.1
06/27/2013 09:09	0.261	0.000	21.9	1.6	69.4	0.1
06/27/2013 09:10	0.325	0.000	23.3	0.4	84.8	0.1
06/27/2013 09:11 06/27/2013 09:12	0.269	0.000	23.7	U.I 1 0	70.0	0.1
06/27/2013 09:13	0.215	0.000	22.0	1.7	57.1	0.1
06/27/2013 09:14	0.286	0.000	24.1	0.7	76.0	0.1
06/27/2013 09:15	0.246	0.000	25.3	0.2	64.4	0.1
06/27/2013 09:16	0.208	0.001	23.4	1.1	54.2	0.2
06/27/2013 09:17	0.224	0.001	24.1	1.3	57.3	0.2
06/27/2013 09:18	0.305	0.000	25.2	0.0	77.2	0.1
06/27/2013 09:19	0.213	0.000	25.6	0.1	54.4	0.1
06/27/2013 09:20	0.203	0.000	24.2	0.8	52.3	0.1
06/27/2013 09:21	0.244	0.000	24.8 วธ อ	0.9	61.3 100 0	0.1
RATA Run # 5	0.100	0.000	23.0	0.0	102.0	0.1

Verified By:

CEMDAS(TM) Data Acquisition System

Page 4 of 6

-

# RATA Report For 6/27/2013, Hour 08:00

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	****						
00/07/2011   00:12   1:0   0.2   0.1   0.2   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 <t< td=""><td>06/27/2013 09:23</td><td>0 256</td><td>0 000</td><td>24 0</td><td>0.0</td><td>64.3</td><td></td></t<>	06/27/2013 09:23	0 256	0 000	24 0	0.0	64.3	
00/27/2013   09:26   0.241   0.000   23.2   1.0   87.7   0.1     00/27/2013   09:26   0.205   0.000   23.8   0.3   50.2   0.0     00/27/2013   09:28   0.205   0.000   23.8   0.3   50.7   0.0     00/27/2013   09:28   0.205   0.000   25.6   0.0   84.2   0.1     00/27/2013   09:28   0.200   26.1   0.0   69.6   0.1     00/27/2013   09:32   0.229   0.001   24.9   0.3   51.8   0.2     00/27/2013   09:33   0.218   0.001   24.9   0.3   62.5   0.1     00/27/2013   09:37   0.159   0.000   24.8   0.3   62.5   0.1     06/27/2013   09:33   0.159   0.001   26.6   1.3   38.7   0.1     06/27/2013   09:41   0.275   0.01   28.1   0.6   62.5   0.23     06/27/2013 <t< td=""><td>06/27/2013 09:23</td><td>0.250</td><td>0.000</td><td>24.9</td><td>0.2</td><td>64.1 61 0</td><td>0.1</td></t<>	06/27/2013 09:23	0.250	0.000	24.9	0.2	64.1 61 0	0.1
06/27/2013   09:26   0.282   0.000   24.0   0.4   67.7   0.1     06/27/2013   09:27   0.305   0.000   22.2   1.7   5.1.7   0.0     06/27/2013   09:28   0.207   0.000   22.2   1.7   5.1.7   0.0     06/27/2013   09:30   0.341   0.000   25.6   0.0   64.2   0.1     06/27/2013   09:31   0.226   0.001   24.7   0.7   53.7   0.1     06/27/2013   09:34   0.215   0.001   24.9   0.3   65.0   0.1     06/27/2013   09:34   0.215   0.001   24.9   0.3   65.0   0.1     06/27/2013   09:39   0.159   0.001   24.6   0.3   52.5   0.2     06/27/2013   09:44   0.177   0.001   28.6   1.3   38.7   0.2     06/27/2013   09:44   0.177   0.001   28.6   1.3   54.7   0.2     0	06/27/2013 09:25	0.241	0.000	23.2	1.0	577	0.1
06/27/2013   09:27   0.205   0.000   22.8   0.3   50.2   0.0     06/27/2013   09:28   0.267   0.000   22.1   1.5   63.4   0.1     06/27/2013   09:39   0.356   0.000   23.7   1.5   63.4   0.1     06/27/2013   09:31   0.290   0.000   24.1   0.0   64.2   0.1     06/27/2013   09:34   0.229   0.001   24.9   0.5   50.8   0.2     06/27/2013   09:35   0.275   0.001   24.9   0.3   65.0   0.1     06/27/2013   09:36   0.275   0.001   24.8   0.3   52.5   0.1     06/27/2013   09:36   0.215   0.001   28.6   1.3   39.0   0.1     06/27/2013   09:41   0.259   0.001   28.7   0.6   42.7   0.2     06/27/2013   09:41   0.259   0.001   26.4   1.0   2     06/27/2013 <td< td=""><td>06/27/2013 09:26</td><td>0.282</td><td>0.000</td><td>24.0</td><td>0.4</td><td>67.7</td><td>0.1</td></td<>	06/27/2013 09:26	0.282	0.000	24.0	0.4	67.7	0.1
06/27/2013   09:29   0.207   0.000   22.2   1.7   5.3.4   0.1     06/27/2013   09:29   0.256   0.000   25.6   0.0   64.2   0.1     06/27/2013   09:31   0.265   0.000   24.5   0.5   52.2   0.1     06/27/2013   09:32   0.265   0.001   24.7   0.7   53.7   0.1     06/27/2013   09:35   0.275   0.001   24.9   0.5   50.8   0.2     06/27/2013   09:35   0.275   0.001   24.9   0.3   65.0   0.1     06/27/2013   09:35   0.216   0.000   22.8   1.9   9.33.3   0.1     06/27/2013   09:39   0.159   0.001   26.6   1.3   38.7   0.2     06/27/2013   09:44   0.173   0.001   26.2   2.6   0.2     06/27/2013   09:44   0.170   0.001   26.4   2.3   49.1   0.2     06/27/2013	06/27/2013 09:27	0.205	0.000	23.8	0.3	50.2	0.0
06/27/2013   09:39   0.256   0.000   23.7   1.5   6.4   0.1     06/27/2013   09:31   0.290   0.000   26.1   0.0   69.6   0.1     06/27/2013   09:32   0.229   0.001   24.7   0.7   53.7   0.1     06/27/2013   09:34   0.229   0.001   24.9   0.3   65.0   0.1     06/27/2013   09:35   0.275   0.001   24.9   0.3   65.0   0.1     06/27/2013   09:36   0.218   0.000   24.8   0.3   55.0   0.1     06/27/2013   09:36   0.159   0.001   24.6   2.3   39.0   0.1     06/27/2013   09:41   0.173   0.001   26.4   0.2   6.7   0.2     06/27/2013   09:41   0.175   0.001   26.4   0.7   44.7   0.2     06/27/2013   09:44   0.197   0.001   26.4   0.2   0.6   0.7   0.6   0.00	06/27/2013 09:28	0.207	0.000	22.2	1.7	51.7	0.0
06/27/2013   09:31   0.000   25.6   0.0   64.2   0.1     06/27/2013   09:32   0.265   0.000   24.5   0.5   52.2   0.1     06/27/2013   09:33   0.229   0.001   24.7   0.7   53.7   0.1     06/27/2013   09:34   0.215   0.001   24.9   0.5   50.8   0.2     06/27/2013   09:35   0.275   0.000   22.8   1.9   93.3   0.1     06/27/2013   09:38   0.159   0.000   24.6   2.3   39.0   0.1     06/27/2013   09:38   0.159   0.001   28.1   0.6   2.5   0.2     06/27/2013   09:44   0.176   0.001   28.8   1.3   36.4   0.2     06/27/2013   09:44   0.176   0.001   30.4   0.1   46.5   0.2     06/27/2013   09:44   0.197   0.001   30.4   0.2   0.2   0.2     06/27/2013	06/27/2013 09:29	0.256	0.000	23.7	1.5	63.4	0.1
00/27/2013 0:230 0.000 26.1 0.0 69.6 0.1   00/27/2013 09:33 0.225 0.001 24.7 0.7 53.7 0.1   00/27/2013 09:34 0.225 0.001 24.9 0.5 50.8 0.2   00/27/2013 09:35 0.275 0.001 24.9 0.3 52.5 0.1   00/27/2013 09:37 0.159 0.000 22.8 1.9 39.0 0.1   06/27/2013 09:39 0.159 0.001 26.6 1.3 38.7 0.2   06/27/2013 09:44 0.173 0.001 28.1 0.6 42.5 0.2   06/27/2013 09:44 0.175 0.001 28.1 0.6 42.5 0.2   06/27/2013 09:44 0.177 0.001 28.8 1.3 50.4 0.2   06/27/2013 09:45 0.188 0.001 30.4 0.1 45.8 0.2   06/27/2013 09:45 0.188 0.001 30.4 0.1 55.8 0.2	06/27/2013 09:30	0.341	0.000	25.6	0.0	84.2	0.1
00/2/7/2013   00:24:5   0.5   62.2   0.1     00/27/2013   00:33   0.229   0.001   24.7   0.7   53.7   0.1     00/27/2013   00:34   0.215   0.001   24.9   0.3   65.0   0.1     00/27/2013   00:34   0.215   0.000   24.8   0.3   52.5   0.1     00/27/2013   09:34   0.159   0.000   24.8   0.3   39.0   0.1     00/27/2013   09:34   0.159   0.001   26.6   1.3   38.7   0.22     00/27/2013   09:44   0.175   0.001   26.1   0.3   46.7   0.2     00/27/2013   09:44   0.176   0.001   26.2   2.3   45.1   0.22     00/27/2013   09:44   0.176   0.001   30.4   0.1   46.8   0.22     00/27/2013   09:44   0.177   0.001   30.4   0.1   46.8   0.22     00/27/2013   09:45   0.123	06/27/2013 09:31	0.290	0.000	26.1	0.0	69.6	0.1
0/2/2/2013   0:243   0.245   0.001   24.7   0.7   53.7   0.1     06/27/2013   0:353   0.215   0.001   24.9   0.3   55.0   0.1     06/27/2013   0:353   0.215   0.001   24.9   0.3   52.5   0.1     06/27/2013   0:357   0.159   0.000   22.8   1.9   39.3   0.1     06/27/2013   0:437   0.6   42.5   0.2   0.2   0.2   0.2   0.2   0.2   0.6   0.1   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2	06/2//2013 09:32	0.265	0.000	24.5	0.5	62.2	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:33	0.229	0.001	24./	0.7	53.7	0.1
06/27/2013 09:36 0.218 0.000 24.6 0.3 52.5 0.1   06/27/2013 09:38 0.159 0.000 22.8 1.9 39.3 0.1   06/27/2013 09:38 0.159 0.001 26.6 1.3 38.7 0.2   06/27/2013 09:40 0.175 0.001 28.1 0.6 42.5 0.2   06/27/2013 09:41 0.225 0.001 28.7 0.2 56.7 0.3   06/27/2013 09:44 0.175 0.001 28.8 1.3 50.4 0.2   06/27/2013 09:44 0.197 0.001 30.4 0.1 55.8 0.2   06/27/2013 09:44 0.197 0.001 30.4 0.1 48.8 0.2   06/27/2013 09:44 0.197 0.001 30.4 0.1 48.8 0.2   06/27/2013 09:44 0.191 0.001 30.3 1.0 49.0 0.2   06/27/2013 09:44 0.180 0.001 30.3 1.0 49.0 0.2 <td>06/27/2013 09:35</td> <td>0.215</td> <td>0.001</td> <td>24.9</td> <td>0.5</td> <td>50.8</td> <td>0.2</td>	06/27/2013 09:35	0.215	0.001	24.9	0.5	50.8	0.2
06/27/2013 09:37 0.159 0.000 22.e 1.9 59.3 0.1   06/27/2013 09:39 0.159 0.001 26.6 1.3 39.0 0.1   06/27/2013 09:41 0.225 0.001 28.1 0.6 42.5 0.2   06/27/2013 09:42 0.176 0.001 27.8 0.7 44.7 0.2   06/27/2013 09:42 0.176 0.001 26.2 2.3 45.1 0.2   06/27/2013 09:44 0.176 0.001 30.4 0.1 45.8 0.2   06/27/2013 09:44 0.176 0.001 30.4 0.1 45.8 0.2   06/27/2013 09:44 0.127 0.01 30.4 0.1 45.8 0.2   06/27/2013 09:44 0.128 0.001 30.3 1.0 49.0 0.2   06/27/2013 09:44 0.127 0.01 32.1 0.0 64.6 0.2   06/27/2013 09:55 0.227 0.001 30.1 0.1 53.1 0.2	06/27/2013 09:36	0.218	0.000	24.8	0.3	52 5	0.1
06/27/2013 09:138 0.159 0.000 24.0 2.3 39.0 0.1   06/27/2013 09:40 0.173 0.001 26.6 1.3 38.7 0.2   06/27/2013 09:41 0.225 0.001 28.7 0.2 56.7 0.3   06/27/2013 09:42 0.175 0.001 26.2 2.3 45.1 0.2   06/27/2013 09:44 0.197 0.001 26.2 2.3 45.1 0.2   06/27/2013 09:44 0.197 0.001 30.4 0.1 46.8 0.2   06/27/2013 09:46 0.224 0.001 30.4 0.1 48.6 0.2   06/27/2013 09:49 0.180 0.001 27.7 1.4 48.6 0.2   06/27/2013 09:50 0.188 0.001 30.3 1.0 49.0 0.2   06/27/2013 09:55 0.122 0.027 0.01 30.1 0.1 53.9 0.2   06/27/2013 09:55 0.192 0.001 30.1 0.1 53.9 </td <td>06/27/2013 09:37</td> <td>0.159</td> <td>0.000</td> <td>22.8</td> <td>1.9</td> <td>39.3</td> <td>0.1</td>	06/27/2013 09:37	0.159	0.000	22.8	1.9	39.3	0.1
06/27/2013 09:39 0.159 0.001 26.6 1.3 38.7 0.2   06/27/2013 09:41 0.225 0.001 28.7 0.2 56.7 0.3   06/27/2013 09:42 0.175 0.001 26.2 2.3 45.1 0.2   06/27/2013 09:43 0.176 0.001 26.2 2.3 45.1 0.2   06/27/2013 09:45 0.189 0.001 30.4 0.1 55.8 0.2   06/27/2013 09:44 0.197 0.001 30.4 0.1 48.6 0.2   06/27/2013 09:47 0.180 0.001 30.3 1.0 49.0 0.2   06/27/2013 09:48 0.180 0.001 30.3 1.0 49.0 0.2   06/27/2013 09:45 0.223 0.001 32.1 0.0 84.1 0.2   06/27/2013 09:51 0.232 0.201 27.1 1.5 33.9 0.2   06/27/2013 09:54 0.212 0.001 29.1 0.8 48.5 0.2 <td>06/27/2013 09:38</td> <td>0.159</td> <td>0.000</td> <td>24.0</td> <td>2.3</td> <td>39.0</td> <td>0.1</td>	06/27/2013 09:38	0.159	0.000	24.0	2.3	39.0	0.1
06/27/2013 09:40 0.173 0.001 28.1 0.6 42.5 0.2   06/27/2013 09:42 0.175 0.001 27.8 0.7 44.7 0.2   06/27/2013 09:42 0.176 0.001 26.8 1.3 50.4 0.2   06/27/2013 09:44 0.197 0.001 28.8 1.3 50.4 0.2   06/27/2013 09:46 0.224 0.001 30.4 0.1 48.8 0.2   06/27/2013 09:47 0.191 0.001 27.7 1.4 45.6 0.2   06/27/2013 09:47 0.180 0.001 30.4 0.1 48.8 0.2   06/27/2013 09:49 0.178 0.001 30.9 0.5 59.2 0.2   06/27/2013 09:51 0.233 0.001 30.1 0.1 53.1 0.2   06/27/2013 09:55 0.192 0.001 28.9 0.8 48.5 0.2   06/27/2013 09:55 0.192 0.001 30.3 0.5 59.4 0.2 <td>06/27/2013 09:39</td> <td>0.159</td> <td>0.001</td> <td>26.6</td> <td>1.3</td> <td>38.7</td> <td>0.2</td>	06/27/2013 09:39	0.159	0.001	26.6	1.3	38.7	0.2
06/27/2013 09:41 0.225 0.001 28.7 0.2 56.7 0.3   06/27/2013 09:43 0.175 0.001 26.2 2.3 45.1 0.2   06/27/2013 09:44 0.197 0.001 30.1 0.3 46.8 0.2   06/27/2013 09:45 0.189 0.001 30.4 0.1 45.8 0.2   06/27/2013 09:47 0.191 0.001 30.4 0.1 46.8 0.2   06/27/2013 09:49 0.180 0.001 30.3 1.0 49.0 0.2   06/27/2013 09:51 0.233 0.001 30.3 1.0 49.0 0.2   06/27/2013 09:52 0.327 0.001 32.1 0.0 84.1 0.2   06/27/2013 09:54 0.212 0.001 29.1 0.9 46.5 0.2   06/27/2013 09:55 0.182 0.001 29.1 0.9 46.5 0.2   06/27/2013 09:57 0.230 0.001 30.3 0.5 59.4 0.2 <td>06/27/2013 09:40</td> <td>0.173</td> <td>0.001</td> <td>28.1</td> <td>0.6</td> <td>42.5</td> <td>0.2</td>	06/27/2013 09:40	0.173	0.001	28.1	0.6	42.5	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:41	0.225	0.001	28.7	0.2	56.7	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:42 06/27/2013 09:42	0.175	0.001	27.8	0.7	44.7	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:43	0,107	0.001	26.2	2.3	45.1	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:45	0.189	0.001	28.8 30 1	1,3	50.4	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:46	0.224	0.001	30.4	0.5	40.0	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:47	0.191	0.001	30.4	0.1	48.8	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:48	0.180	0.001	27.7	1.4	4.5.6	0.2
06/27/2013 09:50 0.188 0.001 30.3 1.0 49.0 0.2   06/27/2013 09:52 0.233 0.001 30.9 0.5 59.2 0.2   06/27/2013 09:52 0.327 0.001 30.1 0.1 53.1 0.2   06/27/2013 09:55 0.209 0.001 30.1 0.1 53.1 0.2   06/27/2013 09:55 0.192 0.001 27.1 1.5 53.9 0.2   06/27/2013 09:56 0.182 0.001 29.1 0.9 46.5 0.2   06/27/2013 09:57 0.230 0.001 30.3 0.5 59.4 0.2   06/27/2013 09:59 0.206 0.001 29.0 0.7 52.7 0.2   06/27/2013 10:00 0.204 0.001 29.0 0.7 55.4 0.2   06/27/2013 10:01 0.216 0.001 29.7 0.5 54.1 0.2   06/27/2013 10:03 0.324 0.001 30.3 0.3 53.9 0.2 <td>06/27/2013 09:49</td> <td>0.178</td> <td>0.001</td> <td>28.8</td> <td>1.5</td> <td>46.0</td> <td>0.2</td>	06/27/2013 09:49	0.178	0.001	28.8	1.5	46.0	0.2
06/27/2013 09:51 0.233 0.001 30.9 0.5 59.2 0.2   06/27/2013 09:52 0.327 0.001 30.1 0.1 53.1 0.2   06/27/2013 09:53 0.209 0.001 21.1 1.5 53.9 0.2   06/27/2013 09:55 0.182 0.001 28.9 0.8 48.5 0.2   06/27/2013 09:55 0.182 0.001 30.3 0.5 59.4 0.2   06/27/2013 09:57 0.230 0.001 30.3 0.5 59.4 0.2   06/27/2013 09:59 0.206 0.001 29.3 1.3 52.1 0.2   06/27/2013 10:00 0.204 0.001 29.3 1.3 52.1 0.2   06/27/2013 10:01 0.216 0.001 29.7 0.5 54.1 0.2   06/27/2013 10:02 0.213 0.001 30.4 0.0 83.9 0.3   06/27/2013 10:04 0.244 0.001 28.0 0.9 58.4 0.2   06/27/2013 10:05 0.224 0.001 28.7 1.0 57.1 0	06/27/2013 09:50	0.188	0.001	30.3	1.0	49.0	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:51	0.233	0.001	30.9	0.5	59.2	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:52	0.327	0.001	32.1	0.0	84.1	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:53	0.209	0.001	30.1 27 1	U.L 1 5	53.L 52.Q	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:55	0.192	0.001	28.9	0.8	48 5	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:56	0,182	0.001	29.1	0.9	46.5	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:57	0.230	0.001	30.3	0.5	59.4	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:58	0.223	0.001	30.8	0.0	57.6	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 09:59	0.206	0.001	29.0	0.7	52.7	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:00	0.204	0.001	29.3	1.3	52.1	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:01	U.Z.L6 0 212	0.001	29.7	0.5	54.1	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:03	0.213	0.001	30.3	0.3	53.9	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:04	0.241	0.001	29.9	0.0	62.2	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:05	0.224	0.001	28.0	0.9	58.4	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:06	0.227	0.001	28.7	1.0	57.1	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:07	0.219	0.001	29.4	0.3	55.0	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:08	0.228	0.001	29.5	0.1	57.1	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:09	0.231	0.001	29.5	0.1	59.4	0.2
06/27/2013 10:11 0.194 0.001 27.7 1.4 50.0 0.2   06/27/2013 10:12 0.219 0.001 28.8 1.4 57.3 0.2   06/27/2013 10:14 0.331 0.001 29.8 0.6 67.2 0.3   06/27/2013 10:15 0.479 0.001 29.7 0.0 115.4 0.2   06/27/2013 10:15 0.479 0.000 26.6 0.6 54.1 0.1   06/27/2013 10:17 0.188 0.000 22.9 2.8 46.0 0.1   06/27/2013 10:19 0.174 0.001 28.7 0.8 43.7 0.1   06/27/2013 10:20 0.248 0.001 28.7 0.3 60.3 0.2   06/27/2013 10:21 0.271 0.001 29.5 0.0 66.5 0.2   06/27/2013 10:22 0.203 0.001 27.5 0.5 49.4 0.2   06/27/2013 10:23 0.191 0.001 25.6 1.7 46.5 0.2 <td>06/27/2013 10:10 06/27/2012 10.11</td> <td>0.207</td> <td>0.001</td> <td>28.3</td> <td>0.6</td> <td>53.3</td> <td>0.2</td>	06/27/2013 10:10 06/27/2012 10.11	0.207	0.001	28.3	0.6	53.3	0.2
06/27/2013 10:13 0.271 0.001 29.8 0.6 67.2 0.3   06/27/2013 10:14 0.331 0.001 30.3 0.0 78.1 0.2   06/27/2013 10:15 0.479 0.001 29.7 0.0 115.4 0.2   06/27/2013 10:15 0.479 0.000 26.6 0.6 54.1 0.1   06/27/2013 10:17 0.188 0.000 22.9 2.8 46.0 0.1   06/27/2013 10:18 0.182 0.000 26.3 2.1 44.7 0.1   06/27/2013 10:19 0.174 0.001 28.7 0.8 43.7 0.1   06/27/2013 10:20 0.248 0.001 28.7 0.3 60.3 0.2   06/27/2013 10:21 0.271 0.001 29.5 0.0 66.5 0.2   06/27/2013 10:22 0.203 0.001 27.5 0.5 49.4 0.2   06/27/2013 10:23 0.191 0.001 25.6 1.7 46.5 0.2 <td>06/27/2013 10:11 06/27/2013 10:12</td> <td>0.194</td> <td>0.001</td> <td>21.1</td> <td>1.4</td> <td>50.0</td> <td>0.2</td>	06/27/2013 10:11 06/27/2013 10:12	0.194	0.001	21.1	1.4	50.0	0.2
06/27/2013 10:14 0.331 0.001 30.3 0.0 78.1 0.2   06/27/2013 10:15 0.479 0.001 29.7 0.0 115.4 0.2   06/27/2013 10:16 0.219 0.000 26.6 0.6 54.1 0.1   06/27/2013 10:17 0.188 0.000 22.9 2.8 46.0 0.1   06/27/2013 10:18 0.182 0.000 26.3 2.1 44.7 0.1   06/27/2013 10:19 0.174 0.001 28.7 0.8 43.7 0.1   06/27/2013 10:21 0.271 0.001 29.5 0.0 66.5 0.2   06/27/2013 10:22 0.203 0.001 27.5 0.5 49.4 0.2   06/27/2013 10:23 0.191 0.001 25.6 1.7 46.5 0.2   06/27/2013 10:24 0.199 0.001 27.1 1.3 48.1 0.2   06/27/2013 10:25 0.194 0.000 28.3 0.6 47.6 0.1 <td>06/27/2013 10:13</td> <td>0.210</td> <td>0.001</td> <td>20.0</td> <td>1.4 0 6</td> <td>57.5</td> <td>0.2</td>	06/27/2013 10:13	0.210	0.001	20.0	1.4 0 6	57.5	0.2
06/27/2013 10:15 0.479 0.001 29.7 0.0 115.4 0.2   06/27/2013 10:16 0.219 0.000 26.6 0.6 54.1 0.1   06/27/2013 10:17 0.188 0.000 22.9 2.8 46.0 0.1   06/27/2013 10:18 0.182 0.000 26.3 2.1 44.7 0.1   06/27/2013 10:19 0.174 0.001 28.7 0.8 43.7 0.1   06/27/2013 10:20 0.248 0.001 28.7 0.3 60.3 0.2   06/27/2013 10:21 0.271 0.001 29.5 0.0 66.5 0.2   06/27/2013 10:22 0.203 0.011 27.5 0.5 49.4 0.2   06/27/2013 10:23 0.191 0.001 25.6 1.7 46.5 0.2   06/27/2013 10:24 0.199 0.001 27.1 1.3 48.1 0.2   06/27/2013 10:25 0.194 0.000 28.3 0.6 47.6 0.1 <td>06/27/2013 10:14</td> <td>0.331</td> <td>0.001</td> <td>30.3</td> <td>0.0</td> <td>78.1</td> <td>0.3</td>	06/27/2013 10:14	0.331	0.001	30.3	0.0	78.1	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/2013 10:15	0.479	0.001	29.7	0.0	115.4	0.2
06/27/2013 10:17 0.188 0.000 22.9 2.8 46.0 0.1   06/27/2013 10:18 0.182 0.000 26.3 2.1 44.7 0.1   06/27/2013 10:19 0.174 0.001 28.7 0.8 43.7 0.1   06/27/2013 10:20 0.248 0.001 28.7 0.3 60.3 0.2   06/27/2013 10:21 0.271 0.001 29.5 0.0 66.5 0.2   06/27/2013 10:22 0.203 0.001 27.5 0.5 49.4 0.2   06/27/2013 10:23 0.191 0.001 25.6 1.7 46.5 0.2   06/27/2013 10:24 0.199 0.001 27.1 1.3 48.1 0.2   06/27/2013 10:25 0.194 0.000 28.3 0.6 47.6 0.1	06/27/2013 10:16	0.219	0.000	26.6	0.6	54.1	0.1
06/27/2013 10:18 0.182 0.000 26.3 2.1 44.7 0.1   06/27/2013 10:19 0.174 0.001 28.7 0.8 43.7 0.1   06/27/2013 10:20 0.248 0.001 28.7 0.3 60.3 0.2   06/27/2013 10:21 0.271 0.001 29.5 0.0 66.5 0.2   06/27/2013 10:22 0.203 0.001 27.5 0.5 49.4 0.2   06/27/2013 10:23 0.191 0.001 25.6 1.7 46.5 0.2   06/27/2013 10:24 0.199 0.001 27.1 1.3 48.1 0.2   06/27/2013 10:25 0.194 0.000 28.3 0.6 47.6 0.1	06/27/2013 10:17	0.188	0,000	22.9	2.8	46.0	0.1
06/27/201310:190.1740.00128.70.843.70.106/27/201310:200.2480.00128.70.360.30.206/27/201310:210.2710.00129.50.066.50.206/27/201310:220.2030.00127.50.549.40.206/27/201310:230.1910.00125.61.746.50.206/27/201310:240.1990.00127.11.348.10.206/27/201310:250.1940.00028.30.647.60.1	06/27/2013 10:18	0.182	0.000	26.3	2.1	44.7	0.1
06/27/2013   10:20   0.248   0.001   28.7   0.3   60.3   0.2     06/27/2013   10:21   0.271   0.001   29.5   0.0   66.5   0.2     06/27/2013   10:22   0.203   0.001   27.5   0.5   49.4   0.2     06/27/2013   10:23   0.191   0.001   25.6   1.7   46.5   0.2     06/27/2013   10:24   0.199   0.001   27.1   1.3   48.1   0.2     06/27/2013   10:25   0.194   0.000   28.3   0.6   47.6   0.1	06/27/2013 10:19	0.174	0.001	28.7	0.8	43.7	0.1
06/27/2013   10:22   0.203   0.001   29.5   0.0   66.5   0.2     06/27/2013   10:22   0.203   0.001   27.5   0.5   49.4   0.2     06/27/2013   10:23   0.191   0.001   25.6   1.7   46.5   0.2     06/27/2013   10:24   0.199   0.001   27.1   1.3   48.1   0.2     06/27/2013   10:25   0.194   0.000   28.3   0.6   47.6   0.1	U6/2//2013 10:20	0.248	0.001	28.7	0.3	60.3	0.2
06/27/2013   10:23   0.191   0.001   27.5   0.5   49.4   0.2     06/27/2013   10:23   0.191   0.001   25.6   1.7   46.5   0.2     06/27/2013   10:24   0.199   0.001   27.1   1.3   48.1   0.2     06/27/2013   10:25   0.194   0.000   28.3   0.6   47.6   0.1	06/27/2013 10:21	0.2/1	0.001	29.5	0.0	66.5	0.2
06/27/2013   10:24   0.199   0.001   27.1   1.3   48.1   0.2     06/27/2013   10:25   0.194   0.000   28.3   0.6   47.6   0.1	06/27/2013 10:23	0.203	0.001	27.5 25 6	U.5 1 7	49.4	0.2
06/27/2013 10:25 0.194 0.000 28.3 0.6 47.6 0.1	06/27/2013 10:24	0.199	0.001	23.0	1.3	40.5 48 1	0.2
	06/27/2013 10:25	0.194	0.000	28.3	0.6	47.6	0.1

RATA Run # 5

Verified By:

#### CEMDAS(TM) Data Acquisition System

Page 5 of 6

Created: 06/27/13 14:03 Unit 1

# RATA Report For 6/27/2013, Hour 08:00

Time	CO	SO2	NOX	NH3	CO	SO2
	lb/MBtu	lb/MBtu	lb/hr	lb/hr	lb/hr	lb/hr
Average Value	0.288	0.000	25.1	0.7	76.7	0.1

RATA Run # 5

Verified By:

## RATA Report For 6/27/2013, Hour 10:00

Time	02 क्ष	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/27/2013 10.45	6.1	53 9		138 7	0 3	0 117	0 003
06/27/2013 10:46	6.2	53.3	7.7	131.8	0.3	0.116	0.005
06/27/2013 10:47	6.3	55.0	6.8	125.4	0.3	0.121	0.006
06/27/2013 10:48	6.2	57.7	2.8	189.2	0.3	0.126	0.002
06/27/2013 10:49	6.0	59.1	0.0	147.0	0.3	0.127	0.000
06/27/2013 10:50	6.1	54.1	5.2	132.8	0.3	0.117	0.004
06/27/2013 10:51	6.2	55.4	6.4	138.0	0.3	0.121	0.005
06/27/2013 10:52	6.0	57.8	2.2	127.0	0.3	0.124	0.002
06/27/2013 10:53	6.1	57.1	3.5	141.1	0.3	0.124	0.003
06/27/2013 10:54	6.0	57.7	1.7	174.5	0.3	0.124	0.001
06/27/2013 10:55	6.1	57.1	0.9	147.0	0.3	0.124	0.001
06/27/2013 10:57	6.3	55.6	5.1	140.4	0.3	0.123	0.008
06/27/2013 10:58	6.2	56.8	2.7	122.0	0.3	0.125	0.004
06/27/2013 10:59	6.2	57.0	1.6	174.3	0.3	0.124	0.001
06/27/2013 11:00	5.9	57.5	0.3	155.5	0.3	0.122	0.000
06/27/2013 11:01	5.7	53.6	6.0	118.4	0.3	0.112	0.005
06/27/2013 11:02	5.7	54.4	9.7	134.0	0.3	0.113	0.007
06/27/2013 11:03	6.1	57.2	6,5	160.2	0.3	0.124	0.005
06/27/2013 11:04	6.3	60.0	0.6	170.5	0.3	0.132	0.000
06/27/2013 11:05	6.2	60.6	0.0	192.7	0.3	0.132	0.000
06/27/2013 11:06	6.3	57.4	U.8 7 2	141.5	0.3	0.127	0.001
06/27/2013 11:07	6.2 5.9	53.2	7.3	102 4	0.3	0.115	0.006
06/27/2013 11:00	5.8	57 4	79	102.4	0.3	0.117	0.005
06/27/2013 11:10	6.0	60.0	2.3	155.8	0.3	0.129	0.000
06/27/2013 11:11	5.9	62.7	- 0.0	153.1	0.3	0,133	0.000
06/27/2013 11:12	5.9	58.3	3.3	124.3	0.3	0.124	0.003
06/27/2013 11:13	6.1	57.2	6.0	138.8	0.3	0.124	0.005
06/27/2013 11:14	6.1	60.0	0.1	136.6	0.3	0.130	0.000
06/27/2013 11:15	6.1	58.9	1.2	132.0	0.3	0.127	0.001
06/27/2013 11:16	6.1	58.6	0.0	179.6	0.4	0.127	0.000
06/27/2013 11:17	6.2	58.6	0.1	151.8	0.4	0.128	0.000
06/27/2013 11:18	6,1	54.0	4.9	134.8	0.4	0.117	0.004
06/27/2013 11.19	6.0	573	7.0 4 9	120 7	0.4	0.118	0.006
06/27/2013 11:21	6.3	59.3	1.7	174 3	0.3	0.123	0.004
06/27/2013 11:22	6.0	59.7	0.0	179.9	0.3	0,128	0.000
06/27/2013 11:23	6.0	55.7	2.5	145.5	0.3	0.119	0.002
06/27/2013 11:24	6.0	54.2	6.0	135.9	0.3	0.116	0.005
06/27/2013 11:25	6.1	55.8	5.6	133.8	0.3	0.121	0.004
06/27/2013 11:26	6.3	57.5	2.8	134.4	0.4	0.127	0.002
06/27/2013 11:27	6.4	58.3	0.8	168.9	0.3	0.130	0.001
06/27/2013 11:28	6.0	57.5	0.1	124.5	0.3	0.123	0.000
06/27/2013 11:29	5.9	51.6	8.0	LU3.4	0.3	0.110	0.006
06/27/2013 11:30	5.0 6.0	57.6	9.0 5.0	111 1	0.3	0.115	0.008
06/27/2013 11:32	6.5	59 1	0.9	171 4	0.3	0.123	0.004
06/27/2013 11:33	6.5	59.6	0.0	228.3	0.4	0.134	0.001
06/27/2013 11:34	6,4	55.8	0.5	157.4	0.3	0.124	0,000
06/27/2013 11:35	6.2	49.4	9.0	131,1	0.3	0.108	0.007
06/27/2013 11:36	6.3	52.4	7.8	131.5	0.3	0.116	0.006
06/27/2013 11:37	6.3	55.2	3.8	111.6	0.3	0.122	0.003
06/27/2013 11:38	6.2	56.5	1.3	146.7	0.3	0.123	0.001
06/27/2013 11:39	6.2	56.4	0.9	142.9	0.3	0.123	0.001
06/27/2013 11:40	6.3	53.6	5.9	131.0	0.3	0.118	0.005
06/27/2013 11-42	6.Z	55.0	4.6	127.2	E.U	0.120	0.004
06/27/2013 11-43	0,4 2 5	50.5 56 6	2.1 0 E	150.2	0.3	U.126	0.002
06/27/2013 11.43	6,5	57.8	0.0	197 1	0.3	0.12/ 0 196	0.000
06/27/2013 11:45	6.2	54.4	2.5	129.4	0.3	0 119	0.000
06/27/2013 11:46	6.3	50.5	12.1	124.5	0.3	0.111	0.010
06/27/2013 11:47	6.3	55.3	4.6	124.0	0.3	0.122	0.004
06/27/2013 11:48	6.2	57.3	2.2	121.9	0.3	0.125	0.002
RATA Run # 6							

Verified By:

Unit 1

## RATA Report For 6/27/2013, Hour 10:00

Time	02 왕	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
							********
06/27/2013 11:49	6.3	57.2	1.2	152.5	0.3	0,126	0.001
06/27/2013 11:50	6.1	57.5	1.2	125.6	0.3	0.124	0,001
06/27/2013 11:51	6.0	53.5	7.4	109.3	0.3	0.115	0.006
06/27/2013 11:52	6.0	56.3	6.0	129.2	0.3	0.121	0.005
06/27/2013 11:53	5.9	58.8	2.5	133.1	0.4	0.125	0.002
06/27/2013 11:54	6.2	58.5	3.0	143.8	0.4	0.128	0.002
06/27/2013 11:55	6,3	59.6	0.0	210.4	0.3	0.131	0.000
06/27/2013 11:56	6.3	59.9	0.0	144.0	0.3	0.132	0.000
06/27/2013 11.57	6.1	55.0	5.4	10/.1	0.3	0.122	0.003
06/27/2013 11:59	6.1	56.8	3.7	108.8	0.3	0.121	0.004
06/27/2013 12:00	6.1	57.7	1.8	128.6	0.3	0.125	0.001
06/27/2013 12:01	6.0	58,2	1.4	132.7	0.3	0.125	0.001
06/27/2013 12:02	6.1	56.3	3.6	132.0	0.4	0.122	0.003
06/27/2013 12:03	6.3	56.9	4.4	129.6	0.3	0.125	0.004
06/27/2013 12:04	6.3	57.9	2.0	123.0	0.3	0.128	0.002
06/27/2013 12:05	6.6	58.7	0.5	134.1	0.3	0.133	0.000
06/27/2013 12:06	6.5	57.7	0.0	183.0	0.3	0.130	0.000
06/27/2013 12:07	6.3	50.0	1.2	109.7	0.3	0.122	0.001
06/27/2013 12:09	6.4	53 4	5.0	124.0	0.3	0.111	0.007
06/27/2013 12:10	6.4	54.5	3.8	110.7	0.3	0.121	0.004
06/27/2013 12:11	6.4	54.8	1.7	121,9	0.3	0.122	0.001
06/27/2013 12:12	6.6	55.5	0.2	126.5	0.3	0.126	0.000
06/27/2013 12:13	6.3	53.9	0.8	122.2	0.3	0.119	0.001
06/27/2013 12:14	6.4	. 53,1	4.7	119.0	0.3	0.118	0.004
06/27/2013 12:15	6.6	53.3	4.8	130,6	0.3	0.121	0.004
06/27/2013 12:16	6.8	54.9	1.3	137.2	0.3	0.127	0.001
06/27/2013 12:17	6.7	55.9	0.0	178.4	0.1	0.128	0.000
06/27/2013 12:18	6,5	23.2	0.7	103 7	0.1	0.120	0.001
06/27/2013 12:20	6.5	40.0 52.0	5,4	103.7 103.7	0.3	0.110	0.007
06/27/2013 12:21	6.4	52.9	4.4	112.0	0.3	0.118	0.004
06/27/2013 12:22	6,6	53.6	1.5	150.4	0.3	0.122	0.001
06/27/2013 12:23	6.5	55.1	0.0	150.5	0.3	0.124	0.000
06/27/2013 12:24	6.6	52.2	2.8	126.6	0.3	0.118	0.002
06/27/2013 12:25	6.9	51.6	4.5	134.7	0.2	0.121	0.004
06/27/2013 12:26	6.8	53.9	0.9	122.9	0.1	0.125	0.001
06/27/2013 12:27	6.7	52.8	2.5	105.6	0.1	0,121	0.002
06/27/2013 12:29	6.4	53.8	1 7	113 5	0.3	0.119	0.000
06/27/2013 12:30	6.3	50.6	5.6	107.5	0.5	0.120	0.001
06/27/2013 12:31	6.3	53.0	7.1	117.1	0.3	0.117	0.005
06/27/2013 12:32	6.4	55.1	4.1	125.0	0.3	0.123	0.003
06/27/2013 12:33	6.4	55.9	1.9	123.1	0.3	0.124	0.002
06/27/2013 12:34	6.1	56.2	1.8	114,6	0.3	0.122	0.001
06/27/2013 12:35	6.1	54.7	7.2	108.9	0.3	0.118	0.006
06/27/2013 12:36	6.2	56.2	6.7	119.4	0.3	0.123	0.005
06/27/2013 12:37	6.4	58.7	3.3	111.8	0.3	0.128	0.003
06/27/2013 12:30	0.1 6 0	58.8	2.9	146 7	0.3	0.128	0.002
06/27/2013 12:40	5.8	58.8	2.1	106.8	0.3	0.128	0.001
06/27/2013 12:41	5.5	55.8	8.7	96.6	0.3	0,114	0.002
06/27/2013 12:42	5.8	58.7	7.9	102.1	0.4	0.123	0.006
06/27/2013 12:43	5.7	61.5	3.6	115.2	0.4	0.128	0.003
06/27/2013 12:44	5.9	63.0	1.0	137.2	0.4	0.134	0.001
06/27/2013 12:45	5.9	62.1	0.2	147.0	0.3	0.132	0.000
06/27/2013 12:46	5.9	60,1	1.7	117.6	0.3	0.128	0.001
06/27/2013 12:47	5.8	58.4	5.0	106.5	0.3	0.123	0.004
06/27/2013 12:48	5.8	57.6 57.6	4.1	LU3.0	0.3	0.125	0.003
06/27/2013 12:49	5.0 5.6	59.9 KN 9	4.4 0 0	145 Q	0.3	U.126 0 196	0.003
, -, -,				C, CTJ. 	0.4	0.770	0.000
RATA Run # 6							

Verified By:

### CEMDAS(TM) Data Acquisition System

Created: 06/27/13 14:05

Unit 1 -

#### RATA Report For 6/27/2013, Hour 10:00

	Time	02 %	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX 1b/MBtu	NH3 1b/MBtu
Average	Value	6.2	56.3	3.4	134.1	0.3	0.123	0.003

RATA Run # 6

Verified By:

## RATA Report For 6/27/2013, Hour 10:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
06/27/2013 10:45	0.183	0.001	28.7	0.8	45.0	0.2
06/27/2013 10:46	0.175	0.001	28.1	1.5	42,2	0.2
06/27/2013 10:47	0.168	0.001	28.8	1.3	39.9	0.2
06/27/2013 10:48	0.251	0.001	30.3	0.5	60.5	0.2
06/27/2013 10:49	0.192	0.001	31.0	0.0	47.0	0.2
06/27/2013 10.50	0.173	0.001	20.4	1.0	44.4	0.2
06/27/2013 10:52	0.166	0.001	30 4	0.4	44.2	0.2
06/27/2013 10:53	0.186	0.001	29.9	0.7	44.9	0.2
06/27/2013 10:54	0.228	0.001	30.4	0.3	56.0	0.2
06/27/2013 10:55	0.194	0.001	30.2	0.2	47.6	0.2
06/27/2013 10:56	0.200	0.001	28.0	1.4	48.0	0.2
06/27/2013 10:57	0.188	0.001	29.0	1.0	44.5	0.2
06/27/2013 10:58	0.162	0.001	29.6	0.5	38.7	0.2
06/27/2013 10:59	0.232	0.001	29.6	0.3	55.2	0.2
06/27/2013 11:00	0.201	0.001	30.1	0.1	49.6	0.2
06/27/2013 11:01	0.150	0.001	28.6	1.2	38.4	0.2
06/27/2013 11:02	0.1/0	0.001	29.1	1.9	43.6	0.2
06/27/2013 11:03	0.211	0.001	21 0	L.3 0 1	51.7	0.2
06/27/2013 11:04 06/27/2013 11:05	0.225	0.001	31.0	0.1	54.9	0.2
06/27/2013 11:06	0.190	0.001	29.8	0.0	44 7	0.2
06/27/2013 11:07	0.157	0.001	27.7	1.4	37.6	0.2
06/27/2013 11:08	0.131	0.001	29.2	1.3	32.7	0.2
06/27/2013 11:09	0.134	0.001	30.1	1.5	33.4	0.2
06/27/2013 11:10	0.203	0.001	31.5	0.4	49.8	0.2
06/27/2013 11:11	0.198	0.001	33.0	· 0.0	49.0	0.2
06/27/2013 11:12	0.161	0.001	30.8	0,6	39.9	0.2
06/27/2013 11:13	0.183	0.001	30.0	1.2	44.4	0.2
06/27/2013 11:14	0.180	0.001	31.6	0,0	43.8	0.2
06/27/2013 11:15	0.174	0.001	30.9	0.2	42.2	0.2
06/27/2013 11:10	0.236	0.001	31.1	0.0	58.1	0.3
06/27/2013 11.17 06/27/2013 11.18	0.202	0.001	28 7	1.0	49.1	0.3
06/27/2013 11:19	0.153	0.001	29.0	1.0	374	0.3
06/27/2013 11:20	0.160	0.001	29.9	0.9	38.4	0.2
06/27/2013 11:21	0.234	0.001	31.1	0.3	55.6	0.2
06/27/2013 11:22	0.235	0.001	31.5	0.0	57.7	0.2
06/27/2013 11:23	0.190	0.001	29.6	0.5	47.1	0.2
06/27/2013 11:24	0.177	0.001	28.7	1.2	43.8	0.2
06/27/2013 11:25	0.176	0.001	29.5	1.1	43.0	0.2
06/27/2013 11:26	0.180	0.001	29.9	0.5	42.6	0.3
06/27/2013 11:27	0.229	0.001	30.4	0.2	53.6	0.2
06/27/2013 11:28	0.134	0.001	30.1	0.0	39.6	0.2
06/27/2013 11:29 06/27/2013 11:30	0.134	0.001	20.9	1.5	32.8	0.2
06/27/2013 11:31	0.135	0.001	20.2	1.9	34.5	0.2
06/27/2013 11:32	0.234	0.001	31.1	0.2	55,5	0.2
06/27/2013 11:33	0.312	0.001	31.3	0.0	72.9	0.3
06/27/2013 11:34	0.213	0.001	29.4	0.1	50.4	0.2
06/27/2013 11:35	0.174	0.001	25.8	1.7	41.6	0.2
06/27/2013 11:36	0.176	0.001	27.1	1.5	41.4	0.2
06/27/2013 11:37	0.150	0.001	28.7	0.7	35,4	0.2
06/27/2013 11:38	0.195	0.001	29.7	0.3	46.9	0.2
06/27/2013 11:39	0.190	0.001	29.7	0.2	45.8	0.2
06/27/2013 11:40	0.176	0.001	28.0	1.1	41.6	0.2
UG/27/2013 11:41	0.169	0.001	28.6	0.9	40.2	0.2
06/27/2013 11.43	0.1/6	0.001	27,3	0.5	4±.⊥ 40.0	0.2
06/27/2013 11.44	0.214	0.001	29.0 30 4	0.1	49.8 63.3	0.2
06/27/2013 11:45	0.172	0 001	28.4	0.0	2°2 م 1 1	0.2
06/27/2013 11:46	0.167	0.001	26.3	2.3	39.5	0.2
06/27/2013 11:47	0.166	0.001	28.8	0.9	39.4	0.2

Verified By:

RATA Run # 6

CEMDAS(TM) Data Acquisition System

_

Page 4 of 6

## 

#### RATA Report For 6/27/2013, Hour 10:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
06/27/2013 11:48	0 162	0 001	29 8	04	38 6	0.2
06/27/2013 11:49	0,205	0.001	29.7	0.2	48.2	0.2
06/27/2013 11:50	0.165	0.001	30.1	0.2	40.0	0.2
06/27/2013 11:51	0.143	0.001	28.6	1.5	35.6	0.2
06/27/2013 11:52	0.168	0.001	30.0	1.2	41.9	0.2
06/27/2013 11:53	0.172	0.001	31.4	0.5	43.3	0.3
06/27/2013 11:54	0.191	0.001	31.0	0.6	46.3	0.3
06/27/2013 11:56	0.282	0.001	31.0	0.0	45 6	0.2
06/27/2013 11:57	0.142	0.001	29.3	0.7	34.1	0.2
06/27/2013 11:58	0.131	0.001	29.5	1.1	31.9	0.2
06/27/2013 11:59	0.143	0.001	29.8	0.7	34.7	0.2
06/27/2013 12:00	0.169	0.001	30.5	0.4	41.4	0.2
06/27/2013 12:01	0.173	0.001	30.9	0.3	42.9	0.2
06/27/2013 12:02 06/27/2013 12:03	0.174	0.001	29.8	0.7	42.5	0.3
06/27/2013 12:04	0.165	0.001	30.5	0.9	395	0.2
06/27/2013 12:05	0.185	0.001	30.9	0.1	43.0	0.2
06/27/2013 12:06	0.250	0.001	30.1	0.0	58.1	0.2
06/27/2013 12:07	0.147	0.001	28.9	0,2	35.0	0.2
06/27/2013 12:08	0.168	0.001	26.2	1.5	39.6	0.2
06/27/2013 12:09	0.169	0.001	27.9	1.0	39.7	0.2
06/27/2013 12:10 06/27/2013 12:11	0.150	0.001	28.5 28.6	0.7	35.2	0.2
06/27/2013 12:12	0.105	0.001	20.0	0,3		0.2
06/27/2013 12:13	0.164	0.001	28.4	0,2	39.2	0.2
06/27/2013 12:14	0.161	0.001	28,2	0,9	38.5	0.2
06/27/2013 12:15	0.180	0.001	28.1	0.9	41.9	0.2
06/27/2013 12:16	0.193	0.001	28.8	0.3	43.8	0.2
06/27/2013 12:17	0.249	0.000	29.1	0.0	56.6	0.1
06/27/2013 12:18	0.155	0.000	27.0	0.1	35.9	0.1
06/27/2013 12:20	0,136	0.001	27.2	1.0	31.7	0.2
06/27/2013 12:21	0.152	0.001	27.6	0.8	35.6	0.2
06/27/2013 12:22	0.208	0.001	28.2	0.3	48.1	0.2
06/27/2013 12:23	0.206	0.001	28.9	0.0	48.1	0.2
06/27/2013 12:24	0.175	0.001	27.3	0.5	40.3	0.2
06/27/2013 12:25	0.192	0.001	26.8 27.9	0.9	42.6	0.1
06/27/2013 12:27	0.147	0.000	27.4	0.2	30.7	0.1
06/27/2013 12:28	0.221	0.001	27.1	0.0	50.3	0.2
06/27/2013 12:29	0.154	0.001	27.9	0.3	35.8	0.2
06/27/2013 12:30	0.144	0.001	26.6	1.3	34.5	0.2
06/27/2013 12:31	0.157	0.001	27.6	1.4	37.1	0.2
06/27/2013 12:32	0.169	0.001	28.5	0.8	39.4	0.2
06/27/2013 12:34	0.151	0.001	29.8	0.4	39.2	0.2
06/27/2013 12:35	0.143	0.001	28.8	1.4	34.9	0.2
06/27/2013 12:36	0.159	0.001	29.2	1.3	37.8	0.2
06/27/2013 12:37	0.149	0.001	30.8	0.6	35.7	0.2
06/27/2013 12:38	0.148	0.001	30.9	0.6	35.7	0.2
06/27/2013 12:39	0.191	0.001	30.5	0.3	46.3	0.2
06/27/2013 12:40 06/27/2013 12:41	0.137	0.001	30.5	0.4	33./	0.2
06/27/2013 12:42	0.131	0.001	30.9	1.5	32.7	0.2
06/27/2013 12:43	0.146	0.001	32.4	0.7	36.9	0.3
06/27/2013 12:44	0.177	0.001	33.2	0.2	44.0	0.3
06/27/2013 12:45	0.190	0.001	32.6	0.0	47.0	0.2
06/27/2013 12:46	0.152	0.001	31.6	0.3	37.6	0,2
U6/2//2U13 12:47	0.136	0.001	30.5	1.0	33.8	0.2
06/27/2013 12:40	0.132	0.001	3⊥.U २1 २	0.8 . n p	32.6 35 1	0.2
06/27/2013 12:50	0.183	0.001	32.3	0.0	47.1	0.2
RATA Run # 6		3.001		0.0		<b>ب</b> ي پ

Verified By:

CEMDAS(TM) Data Acquisition System

Page 5 of 6

## RATA Report For 6/27/2013, Hour 10:00

Time	CO lb/MBtu	SO2 1b/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
Average Value	Λ - 7 Q					
Average Value	0.178	0.001	29.5	0.7		42.8

RATA Run # 6

Verified By:

Unit 1

Hourly One Minute Report
For 6/26/2013, Hour 08:00

	PROCESS		OPACITY		02		NOX		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
	1 00	SVC	1 9		 5 0	eve	 			evc
1	1.00	SVC	2.2	SVC	4.7	SVC.	20.0	SVC	4.3	SVC
2	1,00	SVC	2.3	SVC	4.9	SVC	28.3	SVC	4.8	SVC
3	1.00	SVC	1.9	SVC	5.2	SVC	29.6	SVC	2.6	SVC
4	1.00	SVC	1.5	SVC	5.3	SVC	30.8	SVC	0.0	SVC
5	1.00	SVC	1.3	SVC	5.5	SVC	30.2	SVC	0.0	SVC
6	1.00	SVC	1.3	SVC	5.3	SVC	27.6	SVC	0.1	SVC
8	1.00	SVC	1.4 1.6	SVC	5.1	SVC	27.1	SVC	0.2	SVC
9	1.00	SVC	1.5	SVC	5.1	SVC	24.4	SVC	1.3 0 7	SVC
10	1.00	SVC	1.5	SVC	5.1	SVC	24.5	SVC	0.2	SVC
11	1.00	SVC	1.5	SVC	5.1	SVC	22.9	SVC	2.0	SVC
12	1.00	SVC	1.4	SVC	5,2	SVC	22.4	SVC	2.1	SVC
13	1.00	SVC	1.5	SVC	5.4	SVC	22.8	SVC	1.7	SVC
14	1.00	SVC	1.4	SVC	5.6	SVC	21.8	SVC	1.6	SVC
16	1 00	SVC	1.4	SVC	5.3	SVC	22.1 21 1	SVC	0.∠ 2.0	SVC
17	1.00	SVC	1.5	SVC	5.2	SVC	19.6	SVC	4.2	SVC
18	1.00	SVC	1.5	SVC	5.4	SVC	20.6	SVC	3.7	SVC
19	1.00	SVC	1.6	SVC	5.4	SVC	20.5	SVC	4.1	SVC
20	1.00	SVC	1.4	SVC	5.5	SVC	20.9	SVC	3.6	SVC
21	1.00	SVC	1.4	SVC	5.4	SVC	21.7	SVC	3.2	SVC
22	1.00	SVC	1.4	SVC	5.2	SVC	21.8	SVC	2.6	SVC
23	1.00	SVC	1.4	SVC	5.3	SVC	21.9	SVC	3.0	SVC
25	1.00	SVC	1,4	SVC	5.5	SVC	21.8	SVC	3.4	SVC
26	1.00	SVC	1.5	SVC	5.5	SVC	22.2	SVC	1.9	SVC
27	1.00	SVC	1.4	SVC	5.5	SVC	22.0	SVC	2,3	SVC
28	1.00	SVC	1.3	SVC	5.6	SVC	21.1	SVC	4.2	SVC
29	1.00	SVC	1.3	SVC	5.7	SVC	21.9	SVC	3.5	SVC
30	1.00	SVC	1.3	SVC	5.6	SVC	23.0	SVC	1.8	SVC
32	1 00	SVC	1.3	SVC	5.5	SVC	22.9	SVC	2.0	SVC
33	1.00	SVC	1.3	SVC	5.5	SVC	22.3	SVC	2.0	SVC
34	1.00	SVC	1.3	SVC	5.8	SVC	21.7	SVC	4.2	SVC
35	1.00	SVC	1.2	SVC	5.9	SVC	22.3	SVC	4.2	SVC
36	1.00	SVC	1.3	SVC	6.1	SVC	22.9	SVC	4.4	SVC
37	1.00	SVC	1.2	SVC	6.0	SVC	24.0	SVC	2.0	SVC
38	1.00	SVC	1.2	SVC	5.8	SVC	24.7	SVC	1.9	SVC
40	1.00	SVC	1.2	SVC	5.9	SVC	23.8	SVC	3.4	SVC
41	1.00	SVC	1.5	SVC	5.5	SVC	24.8	SVC	3.9	SVC
42	1.00	SVC	1.5	SVC	5.8	SVC	25.7	SVC	3,6	SVC
43	1.00	SVC	1.3	SVC	5.9	SVC	26.0	SVC	3.9	SVC
44	1.00	SVC	1.3	SVC	6.0	SVC	27.0	SVC	3.8	SVC
45	1.00	SVC	1.2	SVC	6.1	SVC	27.8	SVC	2.9	SVC
46	1.00	SVC	1.1	SVC	6.3	SVC	28.4	SVC	1.6	SVC
48	1 00	SVC	1.3	SVC	0.2 6 1	SVC	20.5 27 9	SVC	0.8	SVC
49	1.00	SVC	1.3	SVC	5.8	SVC	27.2	SVC	1.4	SVC
50	1.00	SVC	1.3	SVC	5.8	SVC	25.9	SVC	5.8	SVC
51	1.00	SVC	1.2	SVC	5.8	SVC	27.6	SVC	4.9	SVC
52	1.00	SVC	1.3	SVC	5.9	SVC	29.1	SVC	3.2	SVC
53	1.00	SVC	1.2	SVC	6.0	SVC	29.8	SVC	1.3	SVC
54 55	00.1	SVC	1.2	SVC	6.0	SVC	29.9	SVC	0.0	SVC
56	1 00	SVC	1.1 1 1	SVC	6.U 6 1	SVC	29.3 27 6	SVC	U.3 1 3	SVC
57	1.00	SVC	1.1	SVC	5.8	SVC	27 G	SVC	1.3	SVC
58	1.00	SVC	1.4	SVC	5.8	SVC	27.4	SVC	2.1	SVC
59	1.00	SVC	32.3	SVC	5.7	SVC	26.9	SVC	2.5	SVC

SVC = MONITOR IN SERVICE

.

CEMDAS(TM) Data Acquisition System

Page 1 of 2

Created: 06/27/13 12:30

Unit 1

## Hourly One Minute Report For 6/26/2013, Hour 08:00

	CO		SO2 DDM		DELTA P		TEMP deg F	
Minute	l-Min	Stat	1-Min	Stat	l-Min	Stat	1-Min	Stat
0	247.4	SVC	0.1	SVC	0.702	SVC	361.0	SVC
1	281.7	SVC	0.1	SVC	0.703	SVC	361.6	SVC
2	401.9	SVC	0.1	SVC	0.706	SVC	362.1	SVC
3	284.2	SVC	0.1	SVC	0.701	SVC	362.5	SVC
4	256.4	SVC	0.1	SVC	0.695	SVC	363.0	SVC
5	162.9	SVC	0.0	SVC	0.691	SVC	362.9	SVC
6	137.8	SVC	0.0	SVC	0.695	SVC	362.9	SVC
7	149.2	SVC	0.0	SVC	0.695	SVC	363.0	SVC
8	224.1	SVC	0.0	SVC	0.693	SVC	363.4 262 0	SVC
10	333.2	SVC	0.0	SVC	0.094	SVC	364 0	SVC
11	267.5	SVC	0.0	SVC	0.695	SVC	364.1	SVC
12	274.3	SVC	0.0	SVC	0.695	SVC	364.2	SVC
13	193.2	SVC	0.0	SVC	0.691	SVC	364.3	SVC
14	163.7	SVC	0.0	SVC	0.690	SVC	364.4	SVC
15	162.3	SVC	0.0	SVC	0.691	SVC	364.9	SVC
16	157.7	SVC	0.0	SVC	0.692	SVC	365.1	SVC
17	209.6	SVC	0.0	SVC	0.695	SVC	365.4	SVC
18	241.9	SVC	0.0	SVC	0.696	SVC	365.6	SVC
20	201.0	SVC	0.0	SVC	0.693	SVC	365.6	SVC
20	272.0	SVC	0.0	SVC	0.691	SVC	366 0	SVC
22	193.7	SVC	0.0	SVC	0.692	SVC	365.9	SVC
23	219.7	SVC	0.0	SVC	0.691	SVC	366.0	SVC
24	185.5	SVC	0.0	SVC	0.689	SVC	366.2	SVC
25	153.8	SVC	0.0	SVC	0.694	SVC	366.3	SVC
26	171.8	SVC	0.0	SVC	0.691	SVC	366.4	SVC
27	145.1	SVC	0.0	SVC	0.692	SVC	366.6	SVC
28	131.2	SVC	0.0	SVC	0.692	SVC	366.4	SVC
29	121.9	SVC	0.0	SVC	0.690	SVC	366.3	SVC
30	171 0	SVC	0.0	SVC	0.688	SVC	366.3	SVC
32	191 7	SVC	0.0	SVC	0.693	SVC	366 6	SVC
33	154.7	SVC	0.0	SVC	0.691	SVC	366.6	SVC
34	156.5	SVC	0.0	SVC	0.687	SVC	366.6	SVC
35	127.7	SVC	0.0	SVC	0.689	SVC	366.8	SVC
36	114.0	SVC	0.0	SVC	0.690	SVC	366.9	SVC
37	136.7	SVC	0.0	SVC	0.688	SVC	366,9	SVC
38	100.7	SVC	0.0	SVC	0.691	SVC	366.9	SVC
39	104.7	SVC	0.0	SVC	0.692	SVC	366.9	SVC
40	115 0	SVC	0.0	SVC	0.693	SVC	366.9	SVC
41	208 8	SVC	0.0	SVC	0.695	SVC	366 9	SVC
43	159 7	SVC	0.0	SVC	0.050	SVC	366 9	SVC
44	127.9	SVC	0.0	SVC	0.692	SVC	367.0	SVC
45	111.3	SVC	0.0	SVC	0.689	SVC	366,9	SVC
46	92.9	SVC	0.0	SVC	0.687	SVC	366.8	SVC
47	91.8	SVC	0.0	SVC	0.690	SVC	366.7	SVC
48	132.0	SVC	0.0	SVC	0.694	SVC	366.4	SVC
49	105.2	SVC	0.0	SVC	0.694	SVC	366.8	SVC
50	107.5	SVC	0.0	SVC	0.695	SVC	366.9	SVC
51	1124.8	SVC	0.0	SVC	0.685	SVC	366.7	SVC
52 53	128 2	SVC	0.0	SVC	0.690	SVC	366 9	SVC
54	122.7	SVC	0.0	SVC	0.693	SVC	366.7	SVC
55	106.6	SVC	0.1	SVC	0.690	SVC	366.5	SVC
56	99.2	SVC	0.0	SVC	0.691	SVC	366.4	SVC
57	94.0	SVC	0.0	SVC	0.691	SVC	366.5	SVC
58	106.3	SVC	0.0	SVC	0.691	SVC	366.7	SVC
59	148.5	SVC	0.0	SVC	0.694	SVC	366.6	SVC

SVC = MONITOR IN SERVICE

Unit 1

#### Hourly One Minute Report For 6/26/2013, Hour 09:00

	PROCESS		OPACITY %		02 *		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
0	1.00	SVC	69.6	SVC	5.6	SVC	28.0	SVC	3.0	SVC
1	1.00	SVC	73.9	SVC	5.6	SVC	27.6	SVC	<u>ు.</u> ర ాం	SVC
3	1.00	SVC	72.3	SVC	5.4	SVC	20.4	SVC	0.6	SVC
4	1.00	SVC	25.0	SVC	5,4	SVC	29.3	SVC	1.1	SVC
5	1.00	SVC	1.1	SVC	5.5	SVC	27.8	SVC	4.0	SVC
6	1.00	SVC	1.1	SVC	5.6	SVC	28.3	SVC	4.4	SVC
7	1.00	SVC	1.1	SVC	5.6	SVC	29.1	SVC	3.5	SVC
. 8	1.00	SVC	1.0	SVC	5.5	SVC	30.0	SVC	2.3	SVC
9 10	1.00	SVC	1.2	SVC	5.1	SVC	30.Z	SVC	2.9	SVC
11	1.00	SVC	1.1	SVC	5.6	SVC	31.6	SVC	0.5	SVC
12	1.00	SVC	1.1	SVC	5.7	SVC	29.9	SVC	3.4	SVC
13	1.00	SVC	1.3	SVC	5.7	SVC	30.4	SVC	3.1	SVC
14	1.00	SVC	1.4	SVC	5.6	SVC	31.3	SVC	2.3	SVC
15	1.00	SVC	1.4	SVC	5.7	SVC	31.5	SVC	2.7	SVC
16	1.00	SVC	1.3	SVC	5.7	SVC	31.8	SVC	2.9	SVC
19	1.00	SVC	1.1	SVC	5./	SVC	32.9	SVC	2.1	SVC
19	1.00	SVC	1.1	SVC	5.4	SVC	33.2	SVC	0.1	SVC
20	1.00	SVC	1.3	SVC	5.6	SVC	32.5	SVC	0.5	SVC
21	1.00	SVC	1.2	SVC	5.8	SVC	31.9	SVC	0.2	SVC
22	1.00	SVC	1.2	SVC	5.7	SVC	32.5	SVC	0.0	SVC
23	1.00	SVC	1.4	SVC	5.6	SVC	29.1	SVC	1.0	SVC
24	1.00	SVC	1.3	SVC	5.8	SVC	28.5	SVC	2.1	SVC
25	1.00	SVC	⊥.∠ 1 2	SVC	5.9	SVC	28.9	SVC	0.3	SVC
20	1.00	SVC	1.2	SVC	5.9	SVC	27.2	SVC	0.0	SVC
28	1.00	SVC	1.1	SVC	5.8	SVC	26.5	SVC	0.0	SVC
29	1.00	SVC	1.2	SVC	5.4	SVC	23.8	SVC	1.7	SVC
30	1.00	SVC	1.3	SVC	5.2	SVC	23.4	SVC	3,3	SVC
31	1.00	SVC	1.3	SVC	5.3	SVC	23.5	SVC	3.9	SVC
32	1.00	SVC	1.3	SVC	5.6	SVC	24.2	SVC	2.1	SVC
33	1.00	SVC	13	SVC	5.4	SVC	25.1	SVC	0.0	SVC
35	1.00	SVC	1.3	SVC	5.3	SVC	22.4	SVC	2.6	SVC
36	1.00	SVC	1.4	SVC	5.1	SVC	22.2	SVC	2.9	SVC
37	1.00	SVC	1.5	SVC	5.3	SVC	22.1	SVC	3.2	SVC
38	1.00	SVC	1.4	SVC	5.1	SVC	22.1	SVC	3.3	SVC
39	1.00	SVC	1.5	SVC	5.1	SVC	22.2	SVC	3.8	SVC
40	1.00	SVC	1.6	SVC	5.1	SVC	22.5	SVC	4.9	SVC
42	1.00	SVC	1.5	SVC	 5 3	SVC	22.0	SVC	4.0	SVC
43	1.00	SVC	1.3	SVC	5.5	SVC	24.1	SVC	1.6	SVC
44	1.00	SVC	1.2	SVC	5.2	SVC	23.6	SVC	0.5	SVC
45	1.00	SVC	1.3	SVC	5.2	SVC	22.1	SVC	1.9	SVC
46	1.00	SVC	1.3	SVC	5.0	SVC	21.1	SVC	3.5	SVC
47	1.00	SVC	1.2	SVC	5.1	SVC	21.4	SVC	3.3	SVC
48	1.00	SVC	1.3	SVC	5.4	SVC	21.4	SVC	3.1	SVC
49 50	1.00	SVC	1 2	SVC	⊃.∠ 5.2	SVC	21.0	SVC	1.0	SVC
51	1.00	SVC	1.3	SVC	5.0	SVC	20.5	SVC	2.8	SVC
52	1.00	SVC	1.5	SVC	5.0	SVC	20.5	SVC	3.0	SVC
53	1.00	SVC	1.4	SVC	5.3	SVC	20.5	SVC	4.4	SVC
54	1.00	SVC	1.3	SVC	5.2	SVC	20.8	SVC	3.6	SVC
55	1.00	SVC	1.4	SVC	4.8	SVC	21.8	SVC	2.4	SVC
56	1.00	SVC	1.4	SVC	4.8	SVC	20.7	SVC	3,9	SVC
57	1,00	SVC	1.4	SVC	4.9	SVC	20.8	SVC	4.6	SVC
59	1.00	SVC	1.3	SVC	5.4	SVC	21.8	SVC	3.1	SVC

-----Explanation for Status Code------SVC = MONITOR IN SERVICE

Created: 06/27/13 12:30

Unit 1

## Hourly One Minute Report For 6/26/2013, Hour 09:00

	CO		S02		DELTA P		TEMP	
	PPM		PPM		IWC		deg F	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
	117 0		~ ^ 1		0 (0)		266 0	
1	106 7	SVC	0.1	SVC	0.693	SVC	300.0	SVC
1 2	100.7	SVC	0.1	ave	0.000	SVC	200.2	SVC
2	99.4 97 9	SVC	0,1	SVC	0.691	SVC	366.0	SVC
4	152 8	SVC	0.1	SVC	0.692	SVC	367 0	SVC
	161 5	SVC	0.0	SVC	0.000	SVC	366 9	SVC
5	127 9	SVC	0.0	SVC	0.695	SVC	367 2	SVC
7	109.9	SVC	0.0	SVC	0.693	SVC	367.3	SVC
8	101.2	SVC	0.1	SVC	0.691	SVC	367.4	SVC
9	94.6	SVC	0.1	SVC	0.693	SVC	367.5	SVC
10	128.4	SVC	0.1	SVC	0.693	SVC	367.5	SVC
11	113.9	SVC	0.1	SVC	0.695	SVC	367.4	SVC
12	111.4	SVC	0.1	SVC	0.694	SVC	367.1	SVC
13	106.4	SVC	0.1	SVC	0.697	SVC	367.4	SVC
14	124.3	SVC	0.1	SVC	0.699	SVC	367.5	SVC
15	158.0	SVC	0.1	SVC	0.697	SVC	367.5	SVC
16	156.5	SVC	0.1	SVC	0.696	SVC	367.5	SVC
17	119.6	SVC	0.1	SVC	0.693	SVC	367.5	SVC
18	103.9	SVC	0.1	SVC	0.693	SVC	367.5	SVC
19	106.3	SVC	0,1	SVC	0.694	SVC	367.5	SVC
20	109.7	SVC	0.1	SVC	0.693	SVC	367.5	SVC
21	147.3	SVC	0.1	SVC	0.697	SVC	367.6	SVC
22	122.6	SVC	0.0	SVC	0.697	SVC	367.7	SVC
23	115.9	SVC	0.0	SVC	0.699	SVC	368.2	SVC
24	134.5	SVC	0.0	SVC	0.696	SVC	368.6	SVC
25	130.4	SVC	0.1	SVC	0.696	SVC	368.5	SVC
26	119.4	SVC	0.0	SVC	0.694	SVC	368.5	SVC
27	130.8	SVC	0.0	SVC	0.691	SVC	368.2	SVC
28	98.2	SVC	0.0	SVC	0.694	SVC	368.3	SVC
29	99.6	SVC	0.0	SVC	0.698	SVC	368.5	SVC
30	168.1	SVC	0.0	SVC	0.701	SVC	368.9	SVC
31	170 7	SVC	0.0	SVC	0.699	SVC	369.2	SVC
22	161 1	SVC	0.0	ave	0.090	SVC	202.2	SVC
33	152 0	ave	0.0	5VC	0.090	eve	202.4 202.5	eve
35	149 2	SVC	0.0	SVC	0.699	SVC	370 0	SVC
36	161 7	SVC	0.0	SVC	0.000	SVC	370.0	SVC
37	219 9	SVC	0.0	SVC	0.000	SVC	370.0	SVC
38	267.9	SVC	0.0	SVC	0.702	SVC	370.2	SVC
39	228.2	SVC	0.0	SVC	0.702	SVC	370.6	SVC
40	224.1	SVC	0.0	SVC	0.704	SVC	370.8	SVC
41	237.6	SVC	0.0	SVC	0.706	SVC	371.1	SVC
42	206.5	SVC	0.0	SVC	0.700	SVC	371.2	SVC
43	184.6	SVC	0.0	SVC	0,704	SVC	370.9	SVC
44	165.2	SVC	0.0	SVC	0.696	SVC	370.9	SVC
45	199.4	SVC	0.0	SVC	0.699	SVC	371.0	SVC
46	220.0	SVC	0.0	SVC	0.698	SVC	370.9	SVC
47	268.0	SVC	0.0	SVC	0,698	SVC	371.0	SVC
48	218.2	SVC	0.0	SVC	0.694	SVC	371.0	SVC
49	224.1	SVC	0.0	SVC	0.697	SVC	371.3	SVC
50	226.7	SVC	0.0	SVC	0.696	SVC	371.3	SVC
51	218.4	SVC	0.0	SVC	0.698	SVC	371.6	SVC
52	351.2	SVC	0.0	SVC	0.704	SVC	371.9	SVC
53	270.3	SVC	0.0	SVC	0.697	SVC	372.0	SVC
54	209.9	SVC	0.0	SVC	0.703	SVC	372.1	SVC
55	259.3	SVC	0.0	SVC	0.701	SVC	372.4	SVC
56	419.5	SVC	0.0	SVC	0.705	SVC	372.5	SVC
57	431.U 210.0	SVC	0.0	SVC	0.698	SVC	372.5	SVC
58	3IU.8	SVC	0.0	SVC	0.696	SVC	372.5	SVC
59	1/4.4	SVC	0.0	SVC	0.699	SVC	312.5	SVC

SVC = MONITOR IN SERVICE

-----Explanation for Status Code------

_____

CEMDAS(TM) Data Acquisition System

Fitchburg

Created: 06/27/13 12:30

Unit 1

## Hourly One Minute Report For 6/26/2013, Hour 10:00

	PROCESS		OPACITY %		02 क्ष		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
			~~~~~~						*****	
1	1.00	SVC	1.3	SVC	4.9	SVC	21.8	SVC	1.3	SVC
2	1 00	SVC	1.4	SVC	4.0	SVC	22.0	SVC	2.2	SVC
3	1.00	SVC	1.4	SVC	4.7	SVC	20.7	SVC	47	SVC
4	1.00	SVC	1.5	SVC	5.0	SVC	21.5	SVC	4.8	SVC
5	1.00	SVC	1.5	SVC	5.1	SVC	22.2	SVC	3.4	SVC
6	1.00	SVC	1.3	SVC	4,9	SVC	23.0	SVC	1.4	SVC
7	1.00	SVC	1.3	SVC	4.9	SVC	22.9	SVC	2.2	SVC
8	1.00	SVC	1.3	SVC	5.1	SVC	22.4	SVC	3.1	SVC
9	1.00	SVC	1.3	SVC	4.9	SVC	22.7	SVC	2.8	SVC
10	1.00	SVC	1.6	SVC	4.6	SVC	22.6	SVC	2.5	SVC
11	1.00	SVC	1.8	SVC	4.5	SVC	23.0	SVC	2.6	SVC
12	1.00	SVC	1.6	SVC	4.7	SVC	22.6	SVC	4.4	SVC
13	1.00	SVC	1.5	SVC	5.0	SVC	22.7	SVC	5.7	SVC
15	1.00	SVC	1.3	SVC	5.1	SVC	24.0	SVC	4.6	SVC
15	1.00	SVC	1.3	SVC	5.1	SVC	25.2	SVC	2.9	SVC
17	1.00	SVC	13	SVC	5.0	SVC	20.6	SVC	1.8	SVC
18	1 00	SVC	1 3	SVC	53	SVC	22.4	SVC	2 1	3VC SVC
19	1 00	SVC	. 1.3	SVC	53	SVC	27.7	SVC	2 ° 1 2 ° 1	SVC
20	1.00	SVC	1.4	SVC	4.9	SVC	24 5	SVC	4 1	SVC
21	1.00	SVC	1,6	SVC	4.9	SVC	25.3	SVC	4.3	SVC
22	1.00	SVC	1.4	SVC	5.0	SVC	25.6	SVC	2,6	SVC
23	1.00	SVC	1.2	SVC	5.4	SVC	27.1	SVC	1.4	SVC
24	1.00	SVC	1.1	SVC	5.4	SVC	25.9	SVC	2.1	SVC
25	1.00	SVC	1.1	SVC	5.1	SVC	26.3	SVC	2.1	SVC
26	· 1.00	SVC	1.1	SVC	5.0	SVC	25.9	SVC	· 1,9	SVC
27	1.00	SVC	1.1	SVC	5.2	SVC	25.8	SVC	1.9	SVC
28	1.00	SVC	1.1	SVC	5.1	SVC	25.3	SVC	2.8	SVC
29	1.00	SVC	1.2	SVC	5.1	SVC	25.1	SVC	3.9	SVC
30	1.00	SVC	1.2	SVC	4.8	SVC	25.4	SVC	4.2	SVC
31	1.00	SVC	1.1	SVC	4.7	SVC	25.9	SVC	4.0	SVC
32	1.00	SVC	1.1	SVC	5.1	SVC	26.7	SVC	3.6	SVC
34	1.00	SVC	0.9	SVC	5.1	SVC	27.7	SVC	0.9	SVC
35	1.00	SVC	1 0	SVC	0 8	SVC	27.9	SVC	2.1	SVC
36	1.00	SVC	1 0	SVC	4 9	SVC	20.2	SVC	2.5	SVC
37	1.00	SVC	1.1	SVC	5.0	SVC	27.0	SVC	4.1	SVC
38	1.00	SVC	1.1	SVC	5.3	SVC	28.2	SVC	2.8	SVC
39	1.00	SVC	0.9	SVC	5.2	SVC	28.8	SVC	0.8	SVC
40	1.00	SVC	1.0	SVC	5.0	SVC	29.0	SVC	0.9	SVC
41	1.00	SVC	1.0	SVC	5.1	SVC	27.9	SVC	3.3	SVC
42	1.00	SVC	1,2	SVC	5.2	SVC	28.3	SVC	3.3	SVC
43	1.00	SVC	1.2	SVC	5.4	SVC	28.9	SVC	4.8	SVC
44	1.00	SVC	1.2	SVC	5.6	SVC	29.5	SVC	2.8	SVC
45	1.00	SVC	1.0	SVC	5.3	SVC	31.4	SVC	0.3	SVC
46	1.00	SVC	1.0	SVC	5.2	SVC	29.8	SVC	1.0	SVC
4 /	1,00	SVC	1.0	SVC	5.5	SVC	28.3	SVC	3.6	SVC
40	1.00	SVC	0.9	SVC	5.5	SVC	29.6	SVC	1.1	SVC
50	1 00	SVC	1.0	2VC SVC	5,2	SVC	20.0	SVC	2.7	SVC
51	1 00	SVC	1 1	SVC	5.1 5.1	SVC	∠0.0 20.1	3VC 9VC	2.0	SVC
52	1.00	SVC	1 0	SVC	2.1 2.9	SVC	29.1 29 6	3VC 9VC	ວ.⊃ ງ ຊ	3VC 9VC
53	1.00	SVC	1.1	SVC	49	SVC	30 1	SVC	2.0	SVC
54	1.00	SVC	1.1	SVC	4.9	SVC	30.2	SVC	3.6	SVC
55	1.00	SVC	1.1	SVC	5.0	SVC	31.0	SVC	2.2	SVC
56	1.00	SVC	1.0	SVC	5.1	SVC	31.5	SVC	0.6	SVC
57	1.00	SVC	1.1	SVC	5.1	SVC	30.6	SVC	1.8	SVC
58	1.00	SVC	1.2	SVC	5.1	SVC	29.9	SVC	4.2	SVC
59	1.00	SVC	1.2	SVC	5.1	SVC	31.1	SVC	2.6	SVC

-----Explanation for Status Code------

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Page 1 of 2

Created: 06/27/13 12:30

Unit 1

Hourly One Minute Report For 6/26/2013, Hour 10:00

	CO PPM		SO2 PPM		DELTA P IWC		TEMP deg F	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
0	234 4	SVC		SVC	0 696	SVC	372 6	SVC
1	375 4	SVC	0.0	SVC	0.695	SVC	372.8	SVC
2	511.8	MOR	0.0	SVC	0.698	SVC	373.0	SVC
3	465.7	SVC	0.0	SVC	0.698	SVC	373.0	SVC
4	354.2	SVC	0.0	SVC	0.694	SVC	373.1	SVC
5	243.6	SVC	0.0	SVC	0.700	SVC	373.2	SVC
6	247.9	SVC	0.0	SVC	0.701	SVC	373.3	SVC
7	284.0	SVC	0.0	SVC	0.866	SVC	373.7	SVC
8	234.7	SVC	0.0	SVC	0.896	SVC	373.3	SVC
9	197.4	SVC	0.0	SVC	0.911	SVC	373.7	SVC
10	282.7	SVC	0.0	SVC	0.946	SVC	373.8	SVC
11	511.8	MOR	0.0	SVC	0.950	SVC	374.2	SVC
12	511.8	MOR	0.0	SVC	0.957	SVC	374.4	SVC
13	363.3	SVC	0.0	SVC	0.942	SVC	374.5	SVC
14	216.1 100 0	SVC	0.0	SVC	0.936	SVC	374.7	SVC
10	220 1	SVC	0.0	SVC	0.914	SVC	374.0	SVC
17	309 9	SVC	0.0	SVC	0.920	SVC	374.9	SVC SVC
18	225 5	SVC	0.0	SVC	0.91	SVC	374 4	SVC
19	145.2	SVC	0.0	SVC	0.942	SVC	374.4	SVC
20	160.1	SVC	0.0	SVC	0.947	SVC	374.9	SVC
21	237.0	SVC	0.0	SVC	0.950	SVC	375.0	SVC
22	401.1	SVC	0.0	SVC	0.925	SVC	375.0	SVC
23	237.4	SVC	0.0	SVC	0.902	SVC	375.0	SVC
24	144.7	SVC	0.0	SVC	0.906	SVC	374.9	SVC
25	148.8	SVC	0.0	SVC	0.898	SVC	374.9	SVC
26	233.7	SVC	0.0	SVC	0.875	SVC	.374.7	SVC
27	267.9	SVC	0.0	SVC	0.890	SVC	374.4	SVC
28	196 0	SVC	0.0	SVC	0.892	SVC	374.8	SVC
29	190.2	SVC	0.0	SVC	0.090	SVC	374.7	SVC
31	404 5	SVC	0.1	SVC	0.903	SVC	375 0	SVC
32	411.6	SVC	0.0	SVC	0.900	SVC	374.7	SVC
33	279.5	SVC	0.0	SVC	0.904	SVC	374.4	SVC
34	224.6	SVC	0.0	SVC	0.901	SVC	374.5	SVC
35	288.0	SVC	0.0	SVC	0.918	SVC	374.7	SVC
36	399.0	SVC	0.0	SVC	0.920	SVC	374.5	SVC
37	286.3	SVC	0.0	SVC	0.902	SVC	374.7	SVC
38	289.0	SVC	0~0	SVC	0.910	SVC	374.8	SVC
39	236.8	SVC	0.0	SVC	0.914	SVC	374.9	SVC
40	222.9	SVC	0.1	SVC	0.912	SVC	375.0	SVC
41	241.7	SVC	0.1	SVC	0.924	SVC	375.0	SVC
42	170 0	SVC	0.1	SVC	0.944	SVC	3/5.0	SVC
45	204 1	SVC	0.0	SVC	0.961	SVC	375 1	SVC
45	204.1	SVC	0.0	SVC	0.970	SVC	375 1	SVC
46	244.3	SVC	0.0	SVC	0.946	SVC	375.0	SVC
47	194.6	SVC	0.0	SVC	0.940	SVC	375.0	SVC
48	178.6	SVC	0.0	SVC	0.932	SVC	374.7	SVC
49	184.5	SVC	0.0	SVC	0.938	SVC	374.5	SVC
50	226.7	SVC	0.0	SVC	0.945	SVC	374.5	SVC
51	259.5	SVC	0.0	SVC	0.953	SVC	374.8	SVC
52	394.6	SVC	0.0	SVC	0.976	SVC	375.0	SVC
53	462.0	SVC	0.0	SVC	0.968	SVC	375.0	SVC
54	459.3	SVC	0.0	SVC	0.961	SVC	375.0	SVC
55	461.8	SVC	0.0	SVC	0.949	SVC	375.0	SVC
50	304.3 310 0	SVC	0.0	SVC	0.930	5VC	375.0	5VC
57	310.0 275 5	5VC 5VC	0.0	SVC	0.935	SVC	371 0	SVC
59	309.2	SVC	0.1	SVC	0,957	SVC	374.7	SVC

MOR = MONITOR OUT OF RANGE SVC = MONITOR IN SERVICE

Hourly One Minute Report For 6/26/2013, Hour 11:00

	PROCESS		OPACITY %		02 %		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	l-Min	Stat	1-Min	Stat	1-Min	Stat
	1 00	eve	~~~~~ 1 2	eve	/ 0		22 0			eve
1	1 00	SVC	1 3	SVC	4.8	SVC	31 9	SVC	1 9	SVC
2	1.00	SVC	1.3	SVC	5.0	SVC	31.3	SVC	3.6	SVC
3	1.00	SVC	1.2	SVC	5.4	SVC	32.4	SVC	1.5	SVC
4	1.00	SVC	1.3	SVC	6.0	SVC	32.8	SVC	1.6	SVC
5	1.00	SVC	1.0	SVC	5.8	SVC	31.6	SVC	0.4	SVC
6	1.00	SVC	1.2	SVC	5.3	SVC	33.3	SVC	0.0	SVC
7	1.00	SVC	1.1	SVC	5.3	SVC	30.5	SVC	0.0	SVC
8	1.00	SVC	1.3	SVC	5.1	SVC	29.0	SVC	3.0	SVC
9	1.00	SVC	1.3	SVC	5.2	SVC	29.0	SVC	5.8	SVC
10	1.00	SVC	1.3	SVC	5.5	SVC	29.7	SVC	4.9	SVC
11	1.00	SVC	1.1	SVC	5.4	SVC	32.1	SVC	0.9	SVC
12	1.00	SVC	1.0	SVC	5.7	SVC	31.7	SVC	0.3	SVC
13	1.00	SVC	1.0	SVC	5.7	SVC	28.9	SVC	2.9	SVC
14	1.00	SVC	1.1	SVC	5.7	SVC	30.3	SVC	1.3	SVC
15	1.00	SVC	1.1	SVC	5.7	SVC	30.1	SVC	0.0	SVC
16	1.00	SVC	1.1	SVC	5.5	SVC	29.9	SVC	0.0	SVC
10	1.00	SVC	1.2	SVC	5.4	SVC	27.6	SVC	3.1	SVC
10	1.00	SVC	1.0	SVC	5,8	SVC	28.1	SVC	2.9	SVC
20	1 00	SVC	1.0	SVC	5.5	SVC	20.0 07.7	SVC	1 /	SVC
21	1 00	SVC	1 2	SVC	2.5 4 8	SVC	26.8	SVC	۲. ۲ ۲. ۲	SVC
22	1.00	SVC	1.1	SVC	4 5	SVC	20.0	SVC	26.7	SVC
23	1.00	SVC	1.2	SVC	4.2	SVC	31.0	SVC	41.4	SVC
24	1.00	SVC	1.3	SVC	4.0	SVC	50.9	SVC	46.2	SVC
25	1.00	SVC	1.3	SVC	4.1	SVC	60.0	SVC	44.0	SVC
26	1.00	SVC	1.2	SVC	•4.3	SVC	84.7	SVC	16.1	SVC
27	1.00	SVC	1.1	SVC	4.3	SVC	91.3	SVC	4.3	SVC
28	1.00	SVC	1.1	SVC	4.3	SVC	86.4	SVC	9.0	SVC
29	1.00	SVC	1.2	SVC	4.2	SVC	90.6	SVC	5.4	SVC
30	1.00	SVC	1.9	SVC	4.0	SVC	90.7	SVC	3.0	SVC
31	1.00	SVC	3.0	SVC	3.6	SVC	90.5	SVC	3.8	SVC
32	1.00	SVC	3.2	SVC	3.2	SVC	88.9	SVC	4.1	SVC
33	1.00	SVC	2.5	SVC	3.1	SVC	87.6	SVC	2.4	SVC
34	1.00	SVC	2.0	SVC	3.4	SVC	86.2	SVC	10.5	SVC
35	1.00	SVC	2.0	SVC	3.3	SVC	82.7	SVC	14.4	SVC
30	1.00	SVC	1.4	SVC	2.1	SVC	84.J	SVC	12.2	SVC
30	1.00	SVC	1.5	SVC	2.7	SVC	04.0	SVC	74.0	SVC
20	1 00	SVC	2 0	SVC	3 2	SVC	88 8	SVC	1 6	SVC
40	1.00	SVC	2.1	SVC	3.1	SVC	88.3	SVC	3.2	SVC
41	1.00	SVC	2.1	SVC	2.8	SVC	81.1	SVC	10.9	SVC
42	1.00	SVC	1.7	SVC	3.2	SVC	83.2	SVC	14.8	SVC
43	1.00	SVC	2.0	SVC	3.7	SVC	83.1	SVC	19.3	SVC
44	1.00	SVC	3.5	SVC	3.3	SVC	82.7	SVC	17.6	SVC
45	1.00	SVC	4.2	SVC	3.5	SVC	88.5	SVC	5.5	SVC
46	1.00	SVC	3.4	SVC	3.3	SVC	90.8	SVC	0.6	SVC
47	1,00	SVC	2.0	SVC	3.3	SVC	83.3	SVC	2.6	SVC
48	1.00	SVC	2.1	SVC	3.3	SVC	78.4	SVC	13.6	SVC
49	1.00	SVC	1.5	SVC	3.6	SVC	73.7	SVC	25.6	SVC
50	1.00	SVC	1.5	SVC	3.5	SVC	80.9	SVC	20.5	SVC
51	1.00	SVC	2.0	SVC	3.4	SVC	85.6	SVC	13.6	SVC
52 57	1.00	5VC	72°57	SVC	د.د م د	SVC	00./ 00.7	SVC	т2.У с с	SVC
50	1 00	SVC	40.9 n c	GUC GUC	5.8 7 7	SVC	07.3 20 7	8VC	0.9 7 7	SVC
55	1 00	SVC	2.0	SVC	י. <i>ר</i> ג ג	SVC	87 0	SVC	97	SVC
56	1 00	SVC	4.2	SVC	<u></u> .0 4 ∩	SVC	88 3	SVC	5.1	SVC
57	1.00	SVC	1.1	SVC	4.3	SVC	87.8	SVC	3.7	SVC
58	1.00	SVC	1.6	SVC	3.9	SVC	90.0	SVC	1.8	SVC
59	1.00	SVC	1.3	SVC	4.5	SVC	86.9	SVC	0.0	SVC

-----Explanation for Status Code------SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

------Page 1 of 2

Created: 06/27/13 12:30

Unit 1

Hourly One Minute Report For 6/26/2013, Hour 11:00

	CO PPM		SO2 PPM		DELTA P IWC		TEMP deq F	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
1	338.7 432 5	SVC	0.1	SVC	0.976	SVC	375.0	SVC
2	395.3	SVC	0.0	SVC	0.900	SVC	375.2	SVC
3	344.1	SVC	0.1	SVC	0.972	SVC	375.0	SVC
4	234,8	SVC	0.1	SVC	0.950	SVC	374.8	SVC
5	290.5	SVC	0.1	SVC	0.935	SVC	374.4	SVC
6	212.7	SVC	0.1	SVC	0.936	SVC	374.4	SVC
7	283.9	SVC	0.0	SVC	0.946	SVC	374.3	SVC
8	222.4	SVC	0.0	SVC	0.969	SVC	374.4	SVC
9	239.7	SVC	0.0	SVC	0.976	SVC	374.4	SVC
11	244.2	SVC	0.0	SVC	0.969	SVC	374.4	SVC
12	193 7	SVC	0.0	SVC	0.962	SVC	374.5	SVC
13	170.6	SVC	0.0	SVC	0.941	SVC	374.0	SVC
14	208.0	SVC	0.0	SVC	0.949	SVC	373.8	SVC
15	267.3	SVC	0.0	SVC	0.959	SVC	373.8	SVC
16	256.7	SVC	0.0	SVC	0.938	SVC	373.8	SVC
17	301,5	SVC	0.0	SVC	0.949	SVC	373.5	SVC
18	294.5	SVC	0.0	SVC	0.925	SVC	373.1	SVC
19	263.0	SVC	0.0	SVC	0.933	SVC	372.9	SVC
20	275.3	SVC	0.0	SVC	0.902	SVC	372.7	SVC
21	385 0	SVC	0.0	SVC	0.816	SVC	373.1	SVC
23	447 8	SVC	0.0	SVC	0.802	SVC	376 4	SVC
24	431.6	SVC	0.3	SVC	0.815	SVC	377.8	SVC
25	457.3	SVC	0.4	SVC	0.819	SVC	378.7	SVC
26	422.5	SVC	0.5	SVC	0.802	SVC	379.4	SVC
27	320.4	SVC	0.6	SVC	0.795	SVC	380.0	SVC
28	361.6	SVC	0 . 8	SVC	0.772	SVC	380.0	SVC
29	419.4	SVC	0.8	SVC	0.767	SVC	380.5	SVC
30	488.0	SVC	0.8	SVC	0.782	SVC	380.8	SVC
32	511 8	MOR	0.8	SVC	0.795	SVC	381.4	SVC
33	511.8	MOR	0.6	SVC	0.824	SVC	382 3	SVC
34	511.8	MOR	0.6	SVC	0.831	SVC	382.5	SVC
35	511.8	MOR	0.6	SVC	0.838	SVC	382.5	SVC
36	511.8	MOR	0.6	SVC	0.796	SVC	382.5	SVC
37	511.8	MOR	0.6	SVC	0.798	SVC	382.0	SVC
38	511.8	MOR	0.6	SVC	0.819	SVC	382.4	SVC
39	511.8	MOR	0.6	SVC	0.813	SVC	382.6	SVC
40 41	511.8 511 9	MOR	0.6	SVC	0.838	SVC	383.0	SVC
42	511.8	MOR	0.5	SVC	0,845	SVC	303.4 383.2	SVC
43	511.8	MOR	0.5	SVC	0.817	SVC	383.0	SVC
44	511.8	MOR	0.6	SVC	0.820	SVC	383.1	SVC
45	511.8	MOR	0.6	SVC	0.813	SVC	383.1	SVC
46	511.8	MOR	0.6	SVC	0.813	SVC	383.1	SVC
47	511.8	MOR	0.5	SVC	0.828	SVC	383.1	SVC
48	511.8	MOR	0.5	SVC	0.818	SVC	383.1	SVC
49	511.8	MOR	0.5	SVC	0.797	SVC	382.7	SVC
50	511 8	MOR	0.5	SVC	0.815	SVC	382.6 382.0	SVC
52	511.8	MOR	0.5	SVC	0.781	SVC	204.0 382.8	SVC
53	511.8	MOR	0.5	SVC	0.802	SVC	382.7	SVC
54	511.8	MOR	0.6	SVC	0.785	SVC	382.6	SVC
55	511.8	MOR	0.6	SVC	0.781	SVC	382.5	SVC
56	511.8	MOR	0.6	SVC	0,786	SVC	382.1	SVC
57	511.8	MOR	0.6	SVC	0.803	SVC	382.1	SVC
58	511.8	MOR	0.6	SVC	0.820	SVC	381.1	SVC
59	STT'R	MOR	υ.6	SVC	U.872	SVC	376.6	SVC

					 -Explanation	for	Status	G Code	
MOR =	MONITOR	OUT	OF H	RANGE					
SVC =	MONITOR	IN	SERVI	ICE					

Created: 06/27/13 12:30

Unit 1

Hourly One Minute Report For 6/26/2013, Hour 12:00

	PROCESS		OPACITY %		02 %		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
0	1.00	SVC	1.4	SVC	4.4	SVC	73.8	SVC	0.0	SVC
1	1.00	SVC	1.1	SVC	4.5	SVC	56.8	SVC	0.0	SVC
3	1.00	SVC	1 2	SVC	4.J 4.6	SVC	14 4	SVC	15 4	SVC
4	1.00	SVC	1.1	SVC	4.4	SVC	16.8	SVC	15 0	SVC
5	1.00	SVC	1,1	SVC	4.6	SVC	23.4	SVC	11.7	SVC
6	1.00	SVC	1.3	SVC	4.6	SVC	26.6	SVC	10.0	SVC
7	1.00	SVC	1.1	SVC	4.7	SVC	28.6	SVC	7.0	SVC
8	1.00	SVC	1.2	SVC	4.9	SVC	31.2	SVC	5.9	SVC
9	1.00	SVC	1.0	SVC	5.1	SVC	31,5	SVC	7.4	SVC
10	1.00	SVC	1.0	SVC	5.1	SVC	33.2	SVC	5.4	SVC
11	1.00	SVC	0.8	SVC	5.4	SVC	36.7	SVC	0.9	SVC
12	1.00	SVC	0.8	SVC	5.3	SVC	34.8	SVC	0.4	SVC
13	1.00	SVC	0.9	SVC	5.0	SVC	33.6	SVC	0.3	SVC
14	1.00	SVC	0.8	SVC	5.0	SVC	32.8	SVC	0.4	SVC
15	1.00	SVC	0.8	SVC	5.1	SVC	31.7	SVC	1.5	SVC
17	1.00	SVC	0.8	SVC	4.9	SVC	31.5	SVC	1.6	SVC
19	1.00	SVC	0.8	SVC	5.0	SVC	31.7	SVC	0.3	SVC
19	1 00	SVC	0.7	SVC	5.4	SVC	20.9	SVC	1 6	SVC
20	1 00	SVC	0.5	SVC	J.4 5 5	SVC	20.0	SVC	1.0 0.4	SVC
21	1.00	SVC	0.5	SVC	55	SVC	29.7	SVC	0.4	SVC
22	1.00	SVC	0.7	SVC	4.9	SVC	26.1	SVC	0.0	SVC
23	1.00	SVC	0.8	SVC	4.9	SVC	24.1	SVC	2.7	SVC
24	1.00	SVC	0.6	SVC	5.2	SVC	24.2	SVC	4.1	SVC
25	1.00	SVC	0.5	SVC	5.5	SVC	24.8	SVC	3.8	SVC
26	1.00	SVC	0.6	SVC	5.4	SVC	25.2	SVC	2.6	· SVC
27	1.00	SVC	0.6	SVC	5.2	SVC	26.4	SVC	0.2	SVC
28	1.00	SVC	0.7	SVC	5.6	SVC	25.3	SVC	0.6	SVC
29	1.00	SVC	0.8	SVC	5.3	SVC	23.6	SVC	2.5	SVC
30	1.00	SVC	0.9	SVC	5.1	SVC	23.7	SVC	2.7	SVC
31	1.00	SVC	1.0	SVC	5.1	SVC	23.9	SVC	2.4	SVC
32	1.00	SVC	1.0	SVC	5.2	SVC	23.4	SVC	3.1	SVC
33	1.00	SVC	1.2	SVC	5.4	SVC	23.7	SVC	3.5	SVC
34	1.00	SVC	0.9	SVC	5.7	SVC	23.9	SVC	1.7	SVC
35	1.00	SVC	0.8	SVC	6.U E 0	SVC	23.7	SVC	1.0	SVC
20	1.00	SVC	0.9	SVC	5.8	SVC	22.4	SVC	1.4	SVC
38	1 00	SVC	0.0	SVC	5.0	SVC	21.5	SVC	2,5	SVC
39	1.00	SVC	1.0	SVC	5.4	SVC	19 5	SVC	4 8	SVC
40	1.00	SVC	1.1	SVC	5.3	SVC	19.4	SVC	6.3	SVC
41	1.00	SVC	1.0	SVC	5.4	SVC	20.6	SVC	4,2	SVC
42	1.00	SVC	1.0	SVC	5.4	SVC	21.4	SVC	2.7	SVC
43	1.00	SVC	1.2	SVC	5.3	SVC	20.5	SVC	3.6	SVC
44	1.00	SVC	1.3	SVC	5.6	SVC	20.9	SVC	1.0	SVC
45	1.00	SVC	1.1	SVC	5.3	SVC	20.5	SVC	1.4	SVC
46	1.00	SVC	1.1	SVC	5.2	SVC	19.4	SVC	3.1	SVC
47	1.00	SVC	1.1	SVC	5.4	SVC	18.8	SVC	4.3	SVC
48	1.00	SVC	1.2	SVC	5.5	SVC	19.1	SVC	4.9	SVC
49	1.00	SVC	1.2	SVC	5.7	SVC	19.8	SVC	4.7	SVC
50	1.00	SVC	1.1	SVC	5.6	SVC	20.2	SVC	3.0	SVC
51 50	1 00	SVC	1.2	SVC	5.5	SVC	20.2	SVC	3.7	SVC
->∠ 53	1 00	SVC	1.4 1 F	SVC	⊃.4 ⊑ ⊑	SVC	70 1 79'7	SVC	5.7	SVC
54	1 00	SVC	1.0	SVC	5.5 E C	SVC	20.4	5VC 6170	⊃.∠ ⊏ ¬	SVC
55	1.00	SVC	1 2	SVC	5.0 5.9	SVC	20.0 21 4	SVC	י. כ א ג	SVC
56	1.00	SVC	1.1	SVC	62	SVC	22 5	SVC	2.0	SVC
57	1.00	SVC	1.0	SVC	6.2	SVC	21.0	SVC	2.8	SVC
58	1.00	SVC	1.1	SVC	5.8	SVC	21.0	SVC	4.4	SVC
59	1.00	SVC	1.1	SVC	5.9	SVC	20.5	SVC	6.5	SVC

SVC = MONITOR IN SERVICE

Created: 06/27/13 12:30 Unit 1

Hourly One Minute Report For 6/26/2013, Hour 12:00

	CO		S02		DELTA P		TEMP	
Nei maata a	PPM 1 Mint	6 b c b	PPM 1 Min	G b - b	IWC	94-4	deg F	a + - +
Minute	⊥ - M1111	Stat	T - MJ II	Stat	T-MIU	Stat	1-Min	Stat
0	511 8	MOR	0 4	SVC	0 889	SVC	370 4	SVC
1	511 8	MOR	0.4	SVC	0.887	SVC	367 5	SVC
2	511.8	MOR	0.0	SVC	0.883	SVC	366.4	SVC
3	511.8	MOR	0.0	SVC	0.900	SVC	365.7	SVC
4	511.8	MOR	0.0	SVC	0.898	SVC	365.4	SVC
5	511.8	MOR	0.0	SVC	0.910	SVC	365.3	SVC
6	511.8	MOR	0.0	SVC	0.924	SVC	365.3	SVC
7	511.8	MOR	0.0	SVC	0.938	SVC	365.3	SVC
8	511.8	MOR	0.0	SVC	0.945	SVC	365.6	SVC
9	466.5	SVC	0.1	SVC	0.935	SVC	365.3	SVC
10	400.4	SVC	0.1	SVC	0.918	SVC	365.1	SVC
11	422.3	SVC	0.1	SVC	0.898	SVC	365.0	SVC
12	312.8	SVC	0.1	SVC	0.907	SVC	365.0	SVC
13	403.4	SVC	0.1	SVC	0.911	SVC	365.0	SVC
14	511.8 444 E	PUR	0.1	SVC	0.912	SVC	365.0	SVC
15	444,0	SVC	0.1	SVC	0.926	SVC	365.0	SVC
17	511 8	MOR	0.1	SVC	0.917	SVC	365 0	SVC
18	470 7	SVC	0.0	SVC	0.920	SVC	365 0	SVC
19	369 9	SVC	0.0	SVC	0.910	SVC	365 0	SVC
20	437.8	SVC	0.0	SVC	0.892	SVC	364.7	SVC
21	484.1	SVC	0.0	SVC	0.920	SVC	364.6	SVC
22	481.8	SVC	0.0	SVC	0.952	SVC	365.0	SVC
23	511.8	MOR	0.0	SVC	0.935	SVC	365.0	SVC
24	511.8	MOR	0.0	SVC	0.949	SVC	365.2	SVC
25	510.7	MOR	0.0	SVC	0.928	SVC	365.2	SVC
26	481.2	SVC	0.0	SVC	0.929	SVC	365.1	SVC
27	511.8	MOR	0.0	SVC	0.921	SVC	365.0	SVC
28	446.3	SVC	0.0	SVC	0.932	SVC	365.0	SVC
29	388.3	SVC	0.0	SVC	0.945	SVC	365.0	SVC
30	443.9	SVC	0.0	SVC	0.952	SVC	365.2	SVC
31	458.6	SVC	0.0	SVC	0.976	SVC	365.5	SVC
32	458.0	SVC	0.0	SVC	0.973	SVC	365.6	SVC
	425.3	SVC	0.0	SVC	0.977	SVC	366.0	SVC
35	460.7 211 C	SVC	0.0	SVC	0.945	SVC	366.0	SVC
35	222 G	SVC	0.0	SVC	0.914	SVC	365.0	SVC
37	340 0	SVC	0.0	SVC	0.906	SVC	365 3	SVC
38	279.1	SVC	0.0	SVC	0.908	SVC	365 3	SVC
39	317.4	SVC	0.0	SVC	0,907	SVC	365.0	SVC
40	366.1	SVC	0.0	SVC	0.877	SVC	365.0	SVC
41	392.1	SVC	0.0	SVC	0.866	SVC	364.9	SVC
42	268.7	SVC	0.0	SVC	0.871	SVC	364.9	SVC
43	331.7	SVC	0.0	SVC	0.866	SVC	365.0	SVC
44	431.9	SVC	0.0	SVC	0.909	SVC	365.0	SVC
45	331.8	SVC	0.0	SVC	0.901	SVC	365.0	SVC
46	463.0	SVC	0.0	SVC	0.904	SVC	364.9	SVC
47	436.2	SVC	0.0	SVC	0.907	SVC	365.0	SVC
48	331.6	SVC	0.0	SVC	0.902	SVC	364.9	SVC
49	320.2	SVC	0.0	SVC	0.905	SVC	365.0	SVC
50	202.4 262 1	5VC 9VC	0.0	SVC	0.924	SVC	365 0	SVC
52	303.1	SVC	0.0	SVC	0,240	SVC	365 5	SVC
53	306.4	SVC	0.0	SVC	0,984	SVC	366 0	SVC
54	284.7	SVC	0.0	SVC	0,995	SVC	366.3	SVC
55	369.2	SVC	0.0	SVC	0.972	SVC	366.3	SVC
56	242.7	SVC	0.0	SVC	0.942	SVC	366.3	SVC
57	182.9	SVC	0.0	SVC	0.951	SVC	366.3	SVC
58	164.1	SVC	0.0	SVC	0.934	SVC	366.3	SVC
59	182.4	SVC	0.0	SVC	0.938	SVC	366.2	SVC

-----Explanation for Status Code-----MOR = MONITOR OUT OF RANGE SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Created: 06/27/13 12:30 Unit 1

Hour	ly One	Minu	te Re	port
For	6/26/2	013,	Hour	13:00

	PROCESS		OPACITY %		02 %		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
*****		****								
0	1.00	SVC	1.3	SVC	5.7	SVC	21.7	SVC	5.8	SVC
1	1.00	SVC	1.2	SVC	5.7	SVC	23.5	SVC	2.4	SVC
2	1.00	SVC	1.1	SVC	5.8	SVC	22.9	SVC	3.8	SVC
3	1.00	SVC	1.1	SVC	6.0	SVC	22.6	SVC	4.6	SVC
4	1.00	SVC	1.1	SVC	5.9	SVC	23.3	SVC	3.5	SVC
5	1.00	SVC	1.2	SVC	6.1	SVC	23.4	SVC	3.6	SVC
6	1.00	SVC	1.0	SVC	6.0	SVC	23.6	SVC	1.8	SVC
/	1.00	SVC	1.1	SVC	5.6	SVC	24.0	SVC	∠.0 ⊏ ⊃	SVC
8	1.00	SVC	1.2	SVC	5.5	510	22.2	SVC	5.5 6 1	SVC
9 10	1.00	SVC	1.2	SVC	5.0 6.0	SVC	23.0	SVC	0.1 / 5	SVC
11	1.00	SVC	1.2	SVC	6.0	GUC	23.9	GVC	4.5	SVC
12	1 00	GVC	1 1	SVC	6.2	SVC	20.0	SVC	03	SVC
13	1 00	SVC	1 1	SVC	6 1	SVC	24.5	SVC	1 5	SVC
14	1 00	SVC	1 1	SVC	6.0	SVC	22.4	SVC	4 2	SVC
15	1.00	SVC	1.2	SVC	6.2	SVC	23.2	SVC	4.6	SVC
16	1.00	SVC	1.2	SVC	6.4	SVC	23.4	SVC	3.5	SVC
17	1.00	SVC	1.1	SVC	6.4	SVC	24.4	SVC	0.8	SVC
18	1.00	SVC	1.0	SVC	6.4	SVC	23.6	SVC	0.9	SVC
19	1.00	SVC	1.1	SVC	6.1	SVC	22.4	SVC	3.0	SVC
20	1.00	SVC	1.1	SVC	6.2	SVC	22.1	SVC	4.3	SVC
21	1.00	SVC	1.2	SVC	6.2	SVC	22.7	SVC	4,1	SVC
22	1.00	SVC	1.3	SVC	6.1	SVC	23.5	SVC	4.2	SVC
23	1.00	SVC	1.3	SVC	5.8	SVC	22.9	SVC	4.6	SVC
24	1.00	SVC	1.3	SVC	5.8	SVC	23.6	SVC	6.6	SVC
25	1.00	SVC	1.1	SVC	6.0	SVC	23.0	SVC	8.3	SVC
26	1.00	SVC	1.1	SVC	5.8	SVC	25.9	SVC	6.0	SVC
27	1.00	SVC	1.3	SVC	5.6	SVC	27.2	SVC	4.1	SVC
28	1.00	SVC	1.2	SVC	5.6	SVC	27.1	SVC	4.0	SVC
29	1.00	SVC	1.2	SVC	5.5	SVC	28.4	SVC	3.6	SVC
30	1.00	SVC	1.3	SVC	5.4	SVC	28.1	SVC	4.7	SVC
31	1.00	SVC	1.3	SVC	5.5	SVC	28.6	SVC	5.3	SVC
32	1.00	SVC	1.3	SVC	5.6	SVC	29.9	SVC	4.1	SVC
33	1.00	SVC	1.3	SVC	5.6	SVC	30.7	SVC	2.2	SVC
34	1.00	SVC	1.3	SVC	5.3	SVC	31.2	SVC	0.5	SVC
35	1.00	SVC	1.3	SVC	5.3	SVC	29.4	SVC	2.8	SVC
30	1.00	SVC	1.3	SVC	5.2	SVC	29.1	SVC	4.9	SVC
20	1.00	SVC	1.4	SVC	⇒.⊥ 5 3	SVC	30.0	SVC	2./ 2.9	SVC
30	1,00	SVC	1.5	GVC	5.3	SVC	31 0	SVC	0.8	SVC
40	1 00	SVC	1.4	SVC	5.2	SVC	31.3	SVC	0.9	SVC
41	1.00	SVC	1.4	SVC	5.4	SVC	29.9	SVC	4.0	SVC
42	1.00	SVC	1.4	SVC	5.5	SVC	30.4	SVC	4.1	SVC
43	1.00	SVC	1.5	SVC	5.6	SVC	31,3	SVC	2.3	SVC
44	1.00	SVC	1.4	SVC	5.7	SVC	31.0	SVC	1,2	SVC
45	1.00	SVC	1.3	SVC	5.5	SVC	30.8	SVC	0.2	SVC
46	1.00	SVC	1.3	SVC	5.6	SVC	30.5	SVC	1.0	SVC
47	1.00	SVC	1.3	SVC	5.6	SVC	28,1	SVC	3.1	SVC
48	1.00	SVC	1.3	SVC	5.7	SVC	28.7	SVC	2.6	SVC
49	1.00	SVC	1.4	SVC	5.7	SVC	28.6	SVC	2,2	SVC
50	1.00	SVC	1.4	SVC	5.5	SVC	28.6	SVC	1.9	SVC
51	1.00	SVC	1.4	SVC	5.5	SVC	28.1	SVC	4.3	SVC
52	1.00	SVC	1.3	SVC	5.6	SVC	26.9	SVC	6.5	SVC
53	1.00	SVC	1.2	SVC	5.6	SVC	29.2	SVC	4.4	SVC
54	1.00	SVC	1.2	SVC	5.6	SVC	29.8	SVC	2.7	SVC
55	1.00	SVC	1.1	SVC	5.7	SVC	30.1	SVC	1.3	SVC
56	1.00	SVC	1.1	SVC	5.5	SVC	29.6	SVC	0.4	SVC
57	1.00	SVC	1.1	SVC	5.3	SVC	27.7	SVC	2.4	SVC
58	1.00	SVC	1.3	SVC	5.2	SVC	26.6	SVC	6.8	SVC
59	1.00	SVC	1.3	SVC	5.4	SVC	27.9	SVC	7.1	SVC

-----Explanation for Status Code-----SVC = MONITOR IN SERVICE

Unit 1

Hourly One Minute Report For 6/26/2013, Hour 13:00

	CO		SO2		DELTA P		TEMP dog F	
Minute	1-Min	Stat	1-Min	Stat	1~Min	Stat	1-Min	Stat
		~ ~ ~ ~						
0	188.0	SVC	0.0	SVC	0.950	SVC	366.4	SVC
1	22/.5	SVC	0.0	SVC	0.948	SVC	366.7	SVC
2	1993	SVC	0.0	SVC	0,934	SVC	366.8	SVC
4	185.6	SVC	0.0	SVC	0.923	SVC	366.3	SVC
5	184.6	SVC	0.0	SVC	0.895	SVC	366.3	SVC
б	235.6	SVC	0.0	SVC	0.902	SVC	366.3	SVC
7	197.9	SVC	0.0	SVC	0.930	SVC	366.3	SVC
8	249.1	SVC	0.0	SVC	0.956	SVC	366.7	SVC
9	230.0	SVC	0.0	SVC	0.943	SVC	366.9	SVC
10	207.6	SVC	0.0	SVC	0.911	SVC	366.9	SVC
12	200.2	SVC	0.0	SVC	0.918	SVC	366.9	SVC
13	181.9	SVC	0.0	SVC	0.933	SVC	367 0	SVC
14	182.1	SVC	0.0	SVC	0.924	SVC	367.1	SVC
15	185.2	SVC	0.0	SVC	0.902	SVC	367.3	SVC
16	194.8	SVC	0.0	SVC	0.906	SVC	367.0	SVC
17	228.0	SVC	0.0	SVC	0.896	SVC	366.9	SVC
18	190.7	SVC	0.0	SVC	0.878	SVC	366.9	SVC
20	145 5	SVC	0.0	SVC	0.883	SVC	366.9	SVC
21	167 4	SVC	0.0	SVC	0.873	SVC	366 9	SVC
22	178.8	SVC	0.0	SVC	0.902	SVC	366.9	SVC
23	210.0	SVC	0.0	SVC	0.920	SVC	367.2	SVC
24	177.0	SVC	0.0	SVC	0.922	SVC	367.5	SVC
25	170.6	SVC	0.0	SVC	0.890	SVC	367.4	SVC
26	147.8	SVC	0.0	SVC	0.881	SVC	367.4	SVC
27	151.4 222 6	SVC	0.0	SVC	0.886	SVC	367.5	SVC
29	202.1	SVC	0.0	SVC	0.899	SVC	367 4	SVC
30	223.5	SVC	0.0	SVC	0.915	SVC	367.5	SVC
31	216.7	SVC	0.0	SVC	0,918	SVC	367.7	SVC
32	198.7	SVC	0.0	SVC	0.887	SVC	367.8	SVC
33	197.3	SVC	0.0	SVC	0.912	SVC	367.8	SVC
34	235.0	SVC	0.0	SVC	0.903	SVC	367.8	SVC
35	246.6	SVC	0.0	SVC	0.909	SVC	368.0	SVC
37	354 8	SVC	0.0	SVC	0.894	SVC	368.2	SVC
38	337.3	SVC	0.0	SVC	0.898	SVC	368.8	SVC
39	345.5	SVC	0.0	SVC	0.920	SVC	368.8	SVC
40	298.6	SVC	0.0	SVC	0.920	SVC	369.0	SVC
41	275.9	SVC	0.0	SVC	0.923	SVC	369.0	SVC
42	226.7	SVC	0.0	SVC	0.942	SVC	369.1	SVC
43	212.2	SVC	0.0	SVC	0.930	SVC	369.1	SVC
45	234.3	SVC	0.0	SVC	0.932	SVC	369.2	SVC
46	195.5	SVC	0.1	SVC	0.917	SVC	369.7	SVC
47	194.2	SVC	0.0	SVC	0.926	SVC	369.5	SVC
48	193.2	SVC	0.0	SVC	0.925	SVC	369.6	SVC
49	179.0	SVC	0.0	SVC	0.943	SVC	370.0	SVC
50	207.0	SVC	0.0	SVC	0.959	SVC	370.2	SVC
51	201.3	SVC	0.0	SVC	0.964	SVC	370.3	SVC
⇒∠ 53	∠v3.5 191 4	SVC	0.0	SVC	0,953	SVC	370.5 370 6	5VC 5VC
54	178.4	SVC	0.0	SVC	0,933	SVC	370.7	SVC
55	197.5	SVC	0.0	SVC	0.927	SVC	370.7	SVC
56	191.4	SVC	0.0	SVC	0.926	SVC	370.6	SVC
57	162.4	SVC	0.0	SVC	0.930	SVC	370.6	SVC
58	175.9	SVC	0.0	SVC	0.941	SVC	370.6	SVC
59	205.2	SVC	0.0	SVC	0.952	SVC	370.6	SVC

	Explanation	for	Status	Code
a110	NONTROP TH GERMAN			

.

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

-	
	Hourly One Minute Report
	For 6/26/2013, Hour 14:00

	PROCESS		OPACITY %		02 %		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
	1 00									
1	1.00	SVC	1.4	SVC	5.4	SVC	30.L	SVC	3.9	SVC
2	1.00	SVC	1.5	SVC	55	SVC	30.8	SVC	2.0	SVC
3	1.00	SVC	1.3	SVC	5.9	SVC	31.2	SVC	3.8	SVC
4	1.00	SVC	1.2	SVC	5.5	SVC	32.9	SVC	0.0	SVC
5	1.00	SVC	1.3	SVC	5.5	SVC	30.0	SVC	4.0	SVC
6	1.00	SVC	1.3	SVC	5.6	SVC	28.2	SVC	9.2	SVC
7	1.00	SVC	1.3	SVC	5.5	SVC	31.9	SVC	3.6	SVC
8	1.00	SVC	1.3	SVC	5.5	SVC	32.7	SVC	6.1 7 C	SVC
10	1.00	SVC	13	SVC	55	SVC	35.4	SVC	4 2	SVC
11	1.00	SVC	1.4	SVC	5.4	SVC	36.8	SVC	1.9	SVC
12	1.00	SVC	1.4	SVC	5.4	SVC	37.0	SVC	0.8	SVC
13	1.00	SVC	1.5	SVC	5.3	SVC	36.5	SVC	1.3	SVC
14	1.00	SVC	1.4	SVC	5.5	SVC	35.2	SVC	3,1	SVC
15	1.00	SVC	1.4	SVC	5.7	SVC	35.9	SVC	0.9	SVC
16	1.00	SVC	1.3	SVC	5.9	SVC	36.5	SVC	0.0	SVC
10	1.00	SVC	1.2	SVC	5.9	SVC	35.0	SVC	0.0	SVC
19	1.00	SVC	13	SVC	5.7	SVC	33.0	SVC	27	SVC
20	1.00	SVC	1.4	SVC	5.5	SVC	30.8	SVC	3.8	SVC
21	1.00	SVC	1.4	SVC	5.5	SVC	32.0	SVC	3,3	SVC
22	1.00	SVC	1.5	SVC	5.4	SVC	31.8	SVC	6.0	SVC
23	1.00	SVC	1.3	SVC	5.5	SVC	32.5	SVC	5.8	SVC
24	1.00	SVC	1.2	SVC	5.4	SVC	34.8	SVC	3.2	SVC
25	1.00	SVC	1.1	SVC	5.3	SVC	35.2	SVC	2.1	SVC
26	1.00	SVC	1.2	SVC	5.1	SVC	35.0	SVC	0,5	SVC
27	1.00	SVC	1.2	SVC	4.9	SVC	34.5	SVC	0.1	SVC
28	1.00	SVC	1.2	SVC	4.9	SVC	33.3 22 E	SVC	0.4	SVC
30	1 00	SVC	1 2	SVC	4.6	SVC	30 5	SVC	0.1	SVC
31	1.00	SVC	1.2	SVC	4.6	SVC	29.4	SVC	1.0	SVC
32	1.00	SVC	1.1	SVC	4.8	SVC	28.5	SVC	0.5	SVC
33	1.00	SVC	1.2	SVC	4.8	SVC	27.7	SVC	1.2	SVC
34	1.00	SVC	1.1	SVC	4.9	SVC	26.2	SVC	2.1	SVC
35	1.00	SVC	1.2	SVC	4.9	SVC	26.4	SVC	1.4	SVC
36	1.00	SVC	1.2	SVC	4.8	SVC	25.3	SVC	3,5	SVC
3/	1.00	SVC	1.5 1 4	SVC	4.9	SVC	25.5	SVC	2.8	SVC
39	1.00	SVC	13	SVC	5,1	SVC	20.0	SVC	2.4 1 6	SVC
40	1.00	SVC	1.3	SVC	5.3	SVC	25.6	SVC	0.0	SVC
41	1.00	SVC	1.3	SVC	5.4	SVC	22.9	SVC	2.5	SVC
42	1.00	SVC	1.4	SVC	5.5	SVC	22.1	SVC	4.8	SVC
43	1.00	SVC	1.4	SVC	5.4	SVC	23.2	SVC	3.5	SVC
44	1.00	SVC	1.5	SVC	5.7	SVC	23.0	SVC	3.5	SVC
45	1.00	SVC	1.3	SVC	5.6	SVC	23.0	SVC	1.6	SVC
46	1.00	SVC	1.2	SVC	5.8	SVC	23.4	SVC	2.1	SVC
47	1.00	SVC	1.2	SVC	5.8	SVC	20.9	SVC	4.9	SVC
49	1 00	SVC	1 3	SVC	J./ 5 6	SVC	21.0	SVC	4.4	SVC
50	1.00	SVC	1.4	SVC	5.6	SVC	21.8	SVC	2.6	SVC
51	1.00	SVC	1.4	SVC	5.4	SVC	21.2	SVC	3.3	SVC
52	1.00	SVC	1.4	SVC	5.6	SVC	21.0	SVC	5.3	SVC
53	1.00	SVC	1.3	SVC	5.7	SVC	20.8	SVC	5,4	SVC
54	1.00	SVC	1.3	SVC	5.8	SVC	21.5	SVC	4.0	SVC
55	1.00	SVC	1.3	SVC	5.9	SVC	21.5	SVC	3.6	SVC
56	1.00	SVC	1.2	SVC	5.8	SVC	21.0	SVC	2.7	SVC
57	1.00	SVC	1.3	SVC	5.6	SVC	20.6	SVC	3.4	SVC
50 59	1 00	SVC	1.3	SVC	5.5 5 /	SVC	10 7	SVC	5.0	SVC
~ ~ ~		200	τ.,		5.4	$\cup v \cup$	12.1		2.0	

-----Explanation for Status Code-----SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Page 1 of 2

Hourly One Minute Report For 6/26/2013, Hour 14:00

Minute	CO PPM 1-Min	9+2*	SO2 PPM 1-Min	9+ = +	DELTA P IWC 1-Min	Stat	TEMP deg F 1-Min	Stat
0	216.4	SVC	0.0	SVC	0.930	SVC	370.7	SVC
1	249.5	SVC	0.0	SVC	0.944	SVC	370.8	SVC
2	199.1	SVC	0.0	SVC	0.974	SVC	371.3	SVC
3	270.7	SVC	0.0	SVC	0.959	SVC	371.4	SVC
4	206.2 195 7	SVC	0.0	SVC	0.960	SVC	371 9	SVC
6	196.9	SVC	0.1	SVC	0.959	SVC	371.9	SVC
7	204.4	SVC	0.1	SVC	0.968	SVC	371.9	SVC
8	177.7	SVC	0.1	SVC	0.960	SVC	371.9	SVC
9	178.9	SVC	0.1	SVC	0.954	SVC	372.0	SVC
10	163.9	SVC	0.1	SVC	0.948	SVC	372.3	SVC
11	175.8	SVC	0,1	SVC	0.968	SVC	372.5	SVC
13	229.0	SVC	0.1	SVC	0.980	SVC	372.5	SVC
14	221.9	SVC	0.0	SVC	0.970	SVC	372.5	SVC
15	204.4	SVC	0.1	SVC	0.974	SVC	372.6	SVC
16	189.6	SVC	0.1	SVC	0.965	SVC	372.5	SVC
17	223.9	SVC	0.1	SVC	0.957	SVC	372.5	SVC
18	217.2	SVC	0.1	SVC	0.964	SVC	372.5	SVC
19	185.5	SVC	0.1	SVC	0.974	SVC	372.5	SVC
20	200.5	SVC	0.0	SVC	0.982	SVC	372.5	SVC
22	237.5	SVC	0.0	SVC	0.958	SVC	372.4	SVC
23	275.6	SVC	0.0	SVC	0.920	SVC	371.9	SVC
24	222.0	SVC	0.1	SVC	0.915	SVC	371.8	SVC
25	208.1	SVC	0.0	SVC	0.875	SVC	371.4	SVC
26	249.1	SVC	0.0	SVC	0.877	SVC	371.2	SVC
27	331.3	SVC	0.0	SVC	0.887	SVC	370.9	SVC
28	411.2	SVC	0.0	SVC	0.888	SVC	370.7	SVC
30	497.7 511 8	SVC MOR	0.0	SVC	0.872	SVC	370.5	SVC
31	511.8	MOR	0.0	SVC	0.843	SVC	369.8	SVC
32	511.8	MOR	0.0	SVC	0.855	SVC	369.4	SVC
33	511.8	MOR	0.0	SVC	0.866	SVC	369.2	SVC
34	497.3	SVC	0.0	SVC	0.881	SVC	368.8	SVC
35	421.3	SVC	0.0	SVC	0.898	SVC	368.8	SVC
36	394.8	SVC	0.0	SVC	0.909	SVC	368.9	SVC
. ,, 38	441.2	SVC	0.0	SVC	0.935	SVC	369.0	SVC
39	392.2	SVC	0.0	SVC	0.939	SVC	368.8	SVC
40	331.6	SVC	0.0	SVC	0.940	SVC	368.8	SVC
41	305.8	SVC	0.0	SVC	0.971	SVC	368.8	SVC
42	323.3	SVC	0.0	SVC	0.969	SVC	368.8	SVC
43	319.8	SVC	0.0	SVC	0.989	SVC	368.8	SVC
44	328.8	SVC	0.0	SVC	0.987	SVC	368.6	SVC
46	268.0	SVC	0.0	SVC	0.970	SVC	368.5	SVC
47	227.0	SVC	0.0	SVC	0,960	SVC	368.1	SVC
48	221.5	SVC	0.0	SVC	0.945	SVC	368.0	SVC
49	248.1	SVC	0.0	SVC	0.958	SVC	367.7	SVC
50	313.9	SVC	0.0	SVC	0.978	SVC	367.5	SVC
51	321.9	SVC	0.0	SVC	1.011	SVC	367.5	SVC
52	280 0 280 0	SVC	0.0	SVC	0.988	SVC	367 5	SVC
54	264.9	SVC	0.0	SVC	0.974	SVC	367.1	SVC
55	241.6	SVC	0.0	SVC	0.960	SVC	366.7	SVC
56	254.1	SVC	0.0	SVC	0.927	SVC	366.5	SVC
57	211.3	SVC	0.0	SVC	0.947	SVC	366.3	SVC
58	240.3	SVC	0.0	SVC	0.938	SVC	366.2	SVC
59	266.3	SVC	0.0	SVC	0.938	SVC	366.1	SVC

-----Explanation for Status Code-----MOR = MONITOR OUT OF RANGE SVC = MONITOR IN SERVICE

-	
	Hourly One Minute Report
	For 6/26/2013, Hour 15:00

	PROCESS		OPACITY %		02 \$		NOX		NH3	
Minute	1-Min	Stat	1-Mìn	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
0	1.00	SVC	1.4	SVC	5.4	SVC	20 3	SVC	 Б О	SVC
1	1.00	SVC	1.3	SVC	5.6	SVC	20.1	SVC	6.6	SVC
2	1.00	SVC	1.2	SVC	5.5	SVC	21.5	SVC	4.5	SVC
3	1.00	SVC	1.2	SVC	5.5	SVC	21.0	SVC	4.5	SVC
4	1.00	SVC	1.2	SVC	5.5	SVC	20.4	SVC	7.4	SVC
5	1.00	SVC	1.3	SVC	5.4	SVC	21.9	SVC	6.8	SVC
6	1.00	SVC	1.3	SVC	5.4	SVC	23.8	SVC	5.0	SVC
7	1.00	SVC	1.3	SVC	5.4	SVC	24.4	SVC	3.0	SVC
8	1.00	SVC	1.2	SVC	5.4	SVC	24.1	SVC	3.5	SVC
9 10	1.00	SVC	1.2	SVC	5,5	SVC	23.6	SVC	4.3	SVC
11	1.00	SVC	13	SVC	5.4	SVC	43.8 73.9	SVC	4.3	SVC
12	1.00	SVC	1.3	SVC	5 2	SVC	23.5	SVC	29	SVC
13	1.00	SVC	1.5	SVC	5.1	SVC	23.9	SVC	2.7	SVC
14	1.00	SVC	1.4	SVC	5.3	SVC	22.5	SVC	5.1	SVC
15	1.00	SVC	1,3	SVC	5.5	SVC	22.9	SVC	5,6	SVC
16	1.00	SVC	1.2	SVC	5.5	SVC	24.0	SVC	3.1	SVC
17	1.00	SVC	1.2	SVC	5.5	SVC	23.7	SVC	2.7	SVC
18	1.00	SVC	1.2	SVC	5.2	SVC	23.2	SVC	2.0	SVC
19	1.00	SVC	1.2	SVC	5.1	SVC	22.8	SVC	2.6	SVC
20	1.00	SVC	1.4	SVC	4.9	SVC	21.9	SVC	3.6	SVC
21	1.00	SVC	1.3	SVC	5.1	SVC	22.0	SVC	3.8	SVC
22	1.00	SVC	1.4	SVC	5,4	SVC	21,9	SVC	4.3	SVC
24	1 00	SVC	1.3	SVC	5.5	SVC	22.3	SVC	2.3	SVC
25	1.00	SVC	1.2	SVC	5.6	SVC	20.9	SVC	4 3	SVC
26	1.00	SVC	1.1	SVC	5.6	SVC	20.6	SVC	5.1	SVC
27	1.00	SVC	1.2	SVC	5.5	SVC	21.4	SVC	4.4	SVC
28	1.00	SVC	1.4	SVC	5.4	SVC	21.4	SVC	4.5	SVC
29	1.00	SVC	1.3	SVC	5.4	SVC	21.6	SVC	2.8	SVC
30	1.00	SVC	1.3	SVC	5,4	SVC	21.2	SVC	2.9	SVC
31	1.00	SVC	1.2	SVC	5.5	SVC	20.4	SVC	4.9	SVC
32	1.00	SVC	1.3	SVC	5.5	SVC	20.6	SVC	5.0	SVC
33	1.00	SVC	1.4	SVC	5.6	SVC	21.2	SVC	4.6	SVC
24	1.00	SVC	1.2	SVC	5.8	SVC	21.1	SVC	3.4	SVC
35	1.00	SVC	1.2	SVC	5.1	SVC	21./ 19.9	SVC	3.0	SVC
37	1.00	SVC	1 2	SVC	56	SVC	19.9	SVC	5.1	SVC
38	1.00	SVC	1.2	SVC	5.7	SVC	21.2	SVC	5 4	SVC
39	1.00	SVC	1.3	SVC	5.7	SVC	21.8	SVC	4.0	SVC
40	1.00	SVC	1.3	SVC	5.6	SVC	21.9	SVC	2.6	SVC
41	1.00	SVC	1.3	SVC	5.5	SVC	21.7	SVC	4.1	SVC
42	1.00	SVC	1.3	SVC	5.6	SVC	21.6	SVC	6.2	SVC
43	1.00	SVC	1.4	SVC	5.6	SVC	22.5	SVC	5.8	SVC
44	1.00	SVC	1.4	SVC	5.8	SVC	23.2	SVC	5.4	SVC
45	1.00	SVC	1.3	SVC	5.9	SVC	24.3	SVC	1.9	SVC
46	1.00	SVC	1.2	SVC	5.8	SVC	24.5	SVC	1.5	SVC
48	1.00	SVC	1.2	SVC	5.8	SVC	22.6	SVC	4.7	SVC
49	1 00	SVC	1 3	SVC	5.9	SVC	23.0	SVC	4 0	SVC
50	1.00	SVC	1.4	SVC	6.0	SVC	24.5	SVC	7 9	SVC
51	1.00	SVC	1.3	SVC	5.9	SVC	25.0	SVC	2.1	SVC
52	1.00	SVC	1.3	SVC	5.9	SVC	25.4	SVC	2.3	SVC
53	1.00	SVC	1.3	SVC	6.0	SVC	24.0	SVC	4.6	SVC
54	1.00	SVC	1.3	SVC	6.1	SVC	25.0	SVC	3.9	SVC
55	1.00	SVC	1.3	SVC	6.1	SVC	25.7	SVC	3.0	SVC
56	1.00	SVC	1.3	SVC	6.1	SVC	25.4	SVC	0.8	SVC
-57	1.00	SVC	1.3	SVC	5.7	SVC	25.5	SVC	2.2	SVC
58	1.00	SVC	1.4	SVC	5.8	SVC	24.1	SVC	5.6	SVC
59	1.00	SVC	1.4	SVC	5.8	SVC	24.6	SVC	6.3	SVC

-----Explanation for Status Code-----

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Page 1 of 2

Unit 1

Hourly One Minute Report For 6/26/2013, Hour 15:00

	CO PPM		SO2 PPM		DELTA P IWC		TEMP deg F	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
0	284 1	SVC	0 0	SVC	0 922	SVC	365 8	gwc
1	312.2	SVC	0.0	SVC	0.930	SVC	365.4	SVC
2	288.9	SVC	0,0	SVC	0.913	SVC	365.0	SVC
3	284.3	SVC	0.0	SVC	0.918	SVC	365.0	SVC
4	245.5	SVC	0.0	SVC	0.905	SVC	364.4	SVC
5	296.2	SVC	0.0	SVC	0.906	SVC	364.4	SVC
o T	391.1	SVC	0.0	SVC	0.913	SVC	364.4	SVC
8	317.5	SVC	0.0	SVC	0.907	SVC	363.8	SVC
9	292.6	SVC	0.0	SVC	0.902	SVC	363.8	SVC
10	292.6	SVC	0.0	SVC	0.915	SVC	363.6	SVC
11	395.3	SVC	0.0	SVC	0.907	SVC	363.2	SVC
12	443.1	SVC	0.0	SVC	0.936	SVC	363.1	SVC
13	4/5.6	SVC	0.0	SVC	0.945	SVC	363.1	SVC
15	405.8	SVC	0.0	SVC	0.910	SVC	362.7	SVC
16	309.6	SVC	0.0	SVC	0.894	SVC	362.5	SVC
17	324.6	SVC	0.0	SVC	0.877	SVC	362.5	SVC
18	438.0	SVC	0.0	SVC	0.894	SVC	362.1	SVC
19	470.9	SVC	0.0	SVC	0.892	SVC	361.9	SVC
20 .	511 8	MOR	0.0	SVC	0.904	SVC	361.9	SVC
22	511.8	MOR	0.0	SVC	0.899	SVC	361.6	SVC
23	511.1	MOR	0.0	SVC	0.902	SVC	361.7	SVC
24	427.0	SVC	0.0	SVC	0.903	SVC	361.6	SVC
25	324.1	SVC	0.0	SVC	0.886	SVC	361.5	SVC
26	279.4	SVC	0.0	SVC	0.873	SVC	361.3	SVC
27	264.2	SVC	0.0	SVC	0.886	SVC	361.4	SVC
20	423.3	SVC	0.0	SVC	0.890	SVC	361 3	SVC
30	365.7	SVC	0.0	SVC	0.885	SVC	361.3	SVC
31	311.7	SVC	0.0	SVC	0.878	SVC	361.3	SVC
32	287.9	SVC	0.0	SVC	0.890	SVC	361.4	SVC
33	288.4	SVC	0.0	SVC	0.897	SVC	361.5	SVC
34	263 3	SVC	0.0	SVC	0.890	SVC	361.6	SVC
36	205.5	SVC	0.0	SVC	0,915	SVC	361.4	SVC
37	246.4	SVC	0.0	SVC	0.918	SVC	361.3	SVC
38	237.3	SVC	0.0	SVC	0.902	SVC	361.3	SVC
39	245.1	SVC	0.0	SVC	0.908	SVC	361.3	SVC
40	260.6	SVC	0.0	SVC	0.911	SVC	361.3	SVC
42	258 0	SVC	0.0	SVC	0.934	SVC	361.4 361.6	SVC
43	251,1	SVC	0.0	SVC	0.971	SVC	361.9	SVC
44	242.2	SVC	0.0	SVC	0.958	SVC	362.3	SVC
45	313.9	SVC	0.0	SVC	0.958	SVC	362.5	SVC
46	250.8	SVC	0.0	SVC	0.950	SVC	362.5	SVC
47	205.9 215 5	SVC	0.0	SVC	0.953	SVC	362.5	SVC
49	213.0	SVC	0.0	SVC	0.955	SVC	362.5	SVC
50	226.6	SVC	0.0	SVC	0.973	SVC	362.7	SVC
51	267.5	SVC	0.0	SVC	0.982	SVC	363.0	SVC
52	235.0	SVC	0.0	SVC	0.980	SVC	363.2	SVC
53	226.4	SVC	0.0	SVC	0.990	SVC	363.3	SVC
54	223.7	SVC	0.0	SVC	0,963	SVC	363.6 262 4	SVC
56	276.5	SVC	0.0	SVC	0,949	SVC	363.4 363 6	SVC
57	218.0	SVC	0.0	SVC	0.967	SVC	363.8	SVC
58	200.2	SVC	0.0	SVC	0.963	SVC	363.8	SVC
59	208.9	SVC	0.0	SVC	0.976	SVC	363.8	SVC

-----Explanation for Status Code-----MOR = MONITOR OUT OF RANGE SVC = MONITOR IN SERVICE

_____ CEMDAS(TM) Data Acquisition System

5		
	***************************************	=======
	Hourly One Minute Report	
	For 6/27/2013, Hour 09:00	

	PROCESS		OPACITY %		02 %		NOX PPM		NH3 PPM	
Minute	l-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
0	1.00	SVC	1.2	SVC	5.2	SVC	37.8	SVC	7.9	SVC
1	1.00	SVC	1.4	SVC	5.1	SVC	37.9	SVC	10.2	SVC
2	1.00	SVC	1.3	SVC	5.2	SVC	41.2	SVC	6.4 0 Q	SVC
5	1.00	SVC	1.3	SVC	⊃.> 5 4	SVC	44.0	SVC	0.9	SVC
5	1 00	SVC	1 3	SVC	54	SVC	43.4	SVC	1.1	SVC
6	1.00	SVC	1.2	SVC	5.6	SVC	42.2	SVC	1.5	SVC
7	1.00	SVC	1.3	SVC	5.4	SVC	42.0	SVC	1.1	SVC
8	1.00	SVC	1.2	SVC	5,6	SVC	39.5	SVC	5.3	SVC
9	1.00	SVC	1.3	SVC	5.6	SVC	39.8	SVC	7.8	SVC
10	1.00	SVC	1.2	SVC	5.8	SVC	42.5	SVC	2.2	SVC
11	1.00	SVC	1.1	SVC	5.8	SVC	43.3	SVC	0.7	SVC
12	1.00	SVC	1.2	SVC	5.7	SVC	41.2	SVC	5.0	SVC
13	1.00	SVC	1.3	SVC	5.7	SVC	40.9	SVC	8.2	SVC
14	1.00	SVC	1.2	SVC	5.7	SVC	43.6	SVC	3.6	SVC
15	1.00	SVC	1.1	SVC	5.9	SVC	45.5	SVC	0.8	SVC
16	1.00	SVC	1.2	SVC	5.9	SVC	42.4	SVC	5.4	SVC
10	1.00	SVC	1.2	SVC	6.0	SVC	44.0	SVC	0.4	SVC
10	1.00	SVC	1.1	SVC	6.I	SVC	46.0	SVC	0.1	SVC
20	1.00	SVC	1 1	GVC	6.0	SVC	43 8	SVC	37	SVC
20	1 00	SVC	1 3	SVC	63	SVC	44 7	SVC	4 4	SVC
22	1.00	SVC	1.1	SVC	6.2	SVC	46.7	SVC	0.0	SVC
23	1.00	SVC	1.1	SVC	6.3	SVC	45.0	SVC	1.2	SVC
24	1.00	SVC	1.1	SVC	6.4	SVC	40.2	SVC	7.8	SVC
25	1.00	SVC	1.1	SVC	6.5	SVC	43.1	SVC	4.9	SVC
26	1.00	SVC	1.0	SVC	·6.5	SVC	44.5	SVC	1.8	SVC
27	1.00	SVC	1.0	SVC	6.3	SVC	44.1	SVC	1.7	SVC
28	1.00	SVC	1.1	SVC	6.1	SVC	41.0	SVC	8.3	SVC
29	1.00	SVC	1.1	SVC	6.3	SVC	43.4	SVC	7.4	SVC
30	1.00	SVC	1.2	SVC	6.3	SVC	47.0	SVC	0.2	SVC
31	1.00	SVC	1.2	SVC	6.6	SVC	47.9	SVC	0.1	SVC
32	1.00	SVC	1.0	SVC	6.7	SVC	45.6	SVC	2.3	SVC
33	1.00	SVC	1.0	SVC	6.7	SVC	46.1	SVC	3.6	SVC
34	1.00	SVC	1.1	SVC	0.0	SVC	40.5	SVC	2.0	SVC
35	1 00	SVC	1.1	SVC	6.2	SVC	47 1	SVC	1 3	SVC
37	1 00	SVC	1 0	SVC	6.0	SVC	43 1	SVC	95	SVC
38	1.00	SVC	1.0	SVC	6.0	SVC	45.7	SVC	11.9	SVC
39	1.00	SVC	1.0	SVC	6.1	SVC	50.5	SVC	6.8	SVC
40	1.00	SVC	1.2	SVC	6.0	SVC	53.3	SVC	3.1	SVC
41	1.00	SVC	1.1	SVC	5.8	SVC	54.2	SVC	0.8	SVC
42	1.00	SVC	1.1	SVC	5.7	SVC	52.1	SVC	3.7	SVC
43	1.00	SVC	1.2	SVC	5.7	SVC	49.1	SVC	11.8	SVC
44	1.00	SVC	1.1	SVC	5.7	SVC	54.0	SVC	6.8	SVC
45	1.00	SVC	1.2	SVC	5.9	SVC	57.2	SVC	1.7	SVC
46	1.00	SVC	1.1	SVC	5.9	SVC	57.5	SVC	0.4	SVC
47	1.00	SVC	1.1	SVC	5.7	SVC	57.0	SVC	0.3	SVC
48	1.00	SVC	1.1	SVC	5.8	SVC	51.9	SVC	7.0	SVC
49	1.00	SVC	1.2	SVC	5.7	SVC	53.6	SVC	7.4	SVC
50	1.00	SVC	1.2	SVC	5.7	SVC	55.9	SVC	5.2	SVC
⊃⊥ 50	1.00	SVC	1.3 1 1	SVC	5.9	SVC	⊃/.4 50.2	SVC	2.0	SVC
->∠ 52	1 00	2VC 9VC	1.1 1 1	SVC	5.0	270 277	55 Q	2VC 9VC	0.0	SVC
54	1 00	SVC	1 0	SVC	5.9 5 9	SVC	50 R	SVC	74	SVC
55	1.00	SVC	1.1	SVC	5.9	SVC	53.8	SVC	4.2	SVC
56	1.00	SVC	1.2	SVC	5.8	SVC	54.3	SVC	4.8	SVC
57	1.00	SVC	1.1	SVC	5.8	SVC	55.8	SVC	2.7	SVC
58	1.00	SVC	1.2	SVC	5,8	SVC	56.7	SVC	0.0	SVC
59	1.00	SVC	1.1	SVC	5.8	SVC	53.8	SVC	3.5	SVC

-----Explanation for Status Code-----SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Page 1 of 2

Created: 06/27/13 12:35

Unit 1

Hourly One Minute Report For 6/27/2013, Hour 09:00

	CO		S02		DELTA P		TEMP	
	PPM	.	PPM	<i>.</i>	IWC		deg F	<i>a</i>
Minute	l-Min	Stat	l-Min	Stat	l-Min	Stat	l-Min	Stat
	161 1				0 0 0 0 0	CT7C	265 0	
1	173 0	SVC	0.1	SVC	0.050	SVC	365 8	SVC
2	235 0	SVC	0.1	SVC	0.876	SVC	365 7	SVC
3	222.3	SVC	0.1	SVC	0.878	SVC	365.9	SVC
4	240.4	SVC	0.1	SVC	0.884	SVC	365.7	SVC
5	214,4	SVC	0,1	SVC	0,859	SVC	365.6	SVC
6	282.7	SVC	0.2	SVC	0.877	SVC	365.7	SVC
7	239.3	SVC	0.1	SVC	0.898	SVC	365.9	SVC
8	216.4	SVC	0.1	SVC	0.904	SVC	365.7	SVC
9	207.2	SVC	0.1	SVC	0.896	SVC	365.8	SVC
10	254.1	SVC	0.1	SVC	0.888	SVC	365.9	SVC
11	209.8	SVC	0.1	SVC	0.888	SVC	365.8	SVC
12	169.8	SVC	0.1	SVC	0.908	SVC	365.8	SVC
13	169.3	SVC	0.1	SVC	0.909	SVC	365.8	SVC
14	225.7	SVC	0.1	SVC	0.904	SVC	365.9	SVC
15	161 1	SVC	0.1	SVC	0.911	SVC	366.0	SVC
17	171 7	SVC	0.2	SVC	0.902	SVC	366.0	SVC
18	231 5	SVC	0.2	SVC	0.888	SVC	366 1	SVC
19	163.4	SVC	0.1	SVC	0.885	SVC	365.7	SVC
20	155.8	SVC	0.1	SVC	0.900	SVC	365.6	SVC
21	182.0	SVC	0.1	SVC	0.907	SVC	365.6	SVC
22	303.0	SVC	0.1	SVC	0.905	SVC	365.5	SVC
23	190.5	SVC	0.1	SVC	0,904	SVC	365.3	SVC
24	184.7	SVC	0.1	SVC	0.869	SVC	365.0	SVC
25	176.2	SVC	0.1	SVC	0.855	SVC	365.1	SVC
26	206.1	SVC	0.1	SVC	0.859	SVC	365.2	SVC
27	153.0	SVC	0.0	SVC	0.859	SVC	365.3	SVC
28	157.1	SVC	0.0	SVC	0.865	SVC	365.1	SVC
29	190.7	SVC	0.1	SVC	0.880	SVC	365.1	SVC
21	202.8	SVC	0.1	SVC	0.878	SVC	365.0	SVC
32	190 0	SVC	0.1	SVC	0.870	SVC	365 1	SVC
32	164.4	SVC	0.1	SVC	0.850	SVC	365 0	SVC
34	155.9	SVC	0.3	SVC	0.847	SVC	364.8	SVC
35	200.8	SVC	0.2	SVC	0.834	SVC	364.5	SVC
36	164.0	SVC	0.1	SVC	0.816	SVC	364.3	SVC
37	121.9	SVC	0.1	SVC	0.826	SVC	363,9	SVC
38	122.2	SVC	0.1	SVC	0.811	SVC	363.8	SVC
39	120.9	SVC	0.3	SVC	0.817	SVC	363.7	SVC
40	132.4	SVC	0.3	SVC	0.819	SVC	363.4	SVC
41	176.1	SVC	0.4	SVC	0.823	SVC	363.3	SVC
42	137.6	SVC	0.3	SVC	0.840	SVC	363.4	SVC
43	138.8	SVC	0.3	SVC	0.843	SVC	363.5	SVC
44	155.4	SVC	0.3	SVC	0.838	SVC	363.3	SVC
45	172 2	SVC	0.3	SVC	0.818	SVC	363.1	SVC
40	150 /	SVC	0.3	5VC	0.824	SVC	363.0	SVC
48	140 4	SVC	0,5	SVC	0.057	SVC	362.9	SVC
49	140.6	SVC	0.3	SVC	0.853	SVC	362.9	SVC
50	148.5	SVC	0.3	SVC	0.865	SVC	362.9	SVC
51	180.6	SVC	0.3	SVC	0.855	SVC	362.9	SVC
52	255.5	SVC	0.3	SVC	0,861	SVC	362.8	SVC
53	161.5	SVC	0.3	SVC	0.859	SVC	362.8	SVC
54	164.2	SVC	0.3	SVC	0.857	SVC	362.6	SVC
55	148.4	SVC	0.3	SVC	0.848	SVC	362.7	SVC
56	142.3	SVC	0.3	SVC	0.848	SVC	362.8	SVC
57	179.6	SVC	0.3	SVC	0.868	SVC	362.7	SVC
58	174.3	SVC	0.3	SVC	0.868	SVC	362.9	SVC
57	TOA'D	JVG	0.3	SVC.	V.858	SVC	ວວ∠.ຽ	SVC

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Hourly One Minute Report For 6/27/2013, Hour 10:00

	PROCESS		OPACITY %		02 %		NOX PPM		NH 3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
	1 00	SVC		SVC	 5 9	SVC	 53 9	SVC		SVC
1	1.00	SVC	1.1	SVC	5.0	SVC	55.3	SVC	2.6	SVC
2	1.00	SVC	1.3	SVC	6.0	SVC	56.1	SVC	1.3	SVC
3	1.00	SVC	1.2	SVC	5.8	SVC	56.0	SVC	0.0	SVC
4	1.00	SVC	1.2	SVC	5.7	SVC	55.5	SVC	0.0	SVC
5	1.00	SVC	1.2	SVC	5.7	SVC	51.5	SVC	4.4	SVC
6	1.00	SVC	1.1	SVC	6.0	SVC	53.2	SVC	4.8	SVC
7	1.00	SVC	1.2	SVC	6.0	SVC	54.7	SVC	1.5	SVC
8	1.00	SVC	1.2	SVC	6.0	SVC	55.0	SVC	0.5	SVC
9	1.00	SVC	1.1	SVC	5.8	SVC	54.6	SVC	0.4	SVC
10	1.00	SVC	1.2	SVC	5.8	SVC	52.4	SVC	2.9	SVC
11	1.00	SVC	1.2	SVC	5.8	SVC	51.3	SVC	7.0	SVC
12	1.00	SVC	1.4	SVC	5.9	SVC	52.0	SVC	6.9	SVC
13	1.00	SVC	1,3	SVC	6.3	SVC	54.5	SVC	2.9	SVC
15	1.00	SVC	1.3	SVC	6./ 6.F	SVC	55.9	SVC	0.0	SVC
16	1.00	SVC	1 1	SVC SVC	0.0 6 0	SVC	.0 24.0	SVC	2.0	SVC
17	1 00	SVC	1 1	SVC	6.2	SVC	42 B	SVC	14 1	SVC
18	1.00	SVC	1.1	SVC	6.2	SVC	48.9	SVC	10.7	SVC
19	1.00	SVC	1.2	SVC	6.0	SVC	53.3	SVC	4.1	SVC
20	1.00	SVC	1.2	SVC	6.3	SVC	53.6	SVC	1.7	SVC
21	1.00	SVC	1.1	SVC	6.2	SVC	55.0	SVC	0.0	SVC
22	1.00	SVC	1.1	SVC	6.3	SVC	51.4	SVC	2.3	SVC
23	1.00	SVC	1.0	SVC	6.2	SVC	48.1	SVC	8.7	SVC
24	1.00	SVC	1.0	SVC	6.3	SVC	50.7	SVC	6.4	SVC
25	1.00	SVC	1.2	SVC	6.2	SVC	52.8	SVC	3.1	SVC
26	1.00	SVC	1.1	SVC	6.3	SVC	53.3	SVC	0.5	· SVC
27	1.00	SVC	1.0	SVC	6.3 C 1	SVC	52.9 40 E	SVC	1.4	SVC
20	1 00	SVC	1 1	SVC	6 1	SVC		SVC	5.0	SVC
30	1.00	SVC	1.1	SVC	6.2	SVC	52.2	SVC	5.4	SVC
31	1.00	SVC	1.1	SVC	6.2	SVC	54.0	SVC	3.7	SVC
32	1.00	SVC	1.1	SVC	5.9	SVC	55.8	SVC	0.0	SVC
33	1.00	SVC	1:1	SVC	6.1	SVC	53.8	SVC	2.0	SVC
34	1.00	SVC	1.1	SVC	6.3	SVC	51.9	SVC	7.5	SVC
35	1.00	SVC	1.1	SVC	6.3	SVC	54.9	SVC	2.7	SVC
36	1.00	SVC	1.2	SVC	6.5	SVC	55.5	SVC	1.1	SVC
37	1.00	SVC	1.0	SVC	6.4	SVC	54.7	SVC	0.1	SVC
38	1.00	SVC	1.0	SVC	6.1	SVC	54.3	SVC	1.8	SVC
39	1.00	SVC	1.0	SVC	6.1	SVC	49.7	SVC	9.4	SVC
40	1.00	SVC	1.1	SVC	6.2	SVC	53.8	SVC	6.9	SVC
41	1.00	SVC	1.2	SVC	0.1 6 1	SVC	57.0	SVC	2.0	SVC
43	1.00	SVC	1.1	SVC	6.3	SVC	57.7	SVC	0 0	SVC
44	1.00	SVC	1.1	SVC	6.4	SVC	58.4	SVC	0.0	SVC
45	1.00	SVC	1.1	SVC	6.1	SVC	53.9	SVC	3.9	SVC
46	1.00	SVC	1.0	SVC	6.2	SVC	53.3	SVC	7.7	SVC
47	1.00	SVC	1.1	SVC	6.3	SVC	55.0	SVC	6.8	SVC
48	1.00	SVC	1.0	SVC	6.2	SVC	57.7	SVC	2.8	SVC
49	1.00	SVC	1.1	SVC	6,0	SVC	59.1	SVC	0.0	SVC
50	1.00	SVC	1.0	SVC	б.1	SVC	54.1	SVC	5.2	SVC
51	1.00	SVC	1.0	SVC	6.2	SVC	55.4	SVC	6.4	SVC
52	1.00	SVC	1.1	SVC	6.0	SVC	57.8	SVC	2.2	SVC
53	1.00	SVC	1.2	SVC	6.1	SVC	57.1	SVC	3.5	SVC
54	1.00	SVC	1.1	SVC	6.0	SVC	57.7	SVC	1.7	SVC
55 56	1.00	SVC	1.1	SVC	0.1 6 7	SVC	⊃/.⊥ ⊑? ⊑	SVC	0.9	SVC
50 57	1 00	SVC	1.0	SVC	0.2 6 7	SVC	33.5 55 K	SVC	7.U 5 1	SVC
58	1.00	SVC	1 1	SVC	6 2	SVC	55 B	SVC	2.1 2.7	SVC
59	1.00	SVC	1.0	SVC	6.2	SVC	57.0	SVC	1.6	SVC

-----Explanation for Status Code------SVC = MONITOR IN SERVICE

Created: 06/27/13 12:35

Unit 1

Hourly One Minute Report For 6/27/2013, Hour 10:00

	CO		S02		DELTA P		TEMP	
N	PPM	0 + - +	PPM	7 +++	IWC	0+-+	deg F	0+-+
Minute	I-Min	Stat	I-Min	Stat	1-Min	Stat	1-Min	Stat
0	157.7	SVC	0.3	SVC	0.868	SVC	362.8	SVC
1	165.8	SVC	0.3	SVC	0.848	SVC	362.7	SVC
2	163.6	SVC	0.3	SVC	0.862	SVC	362.6	SVC
3	253.4	SVC	0.4	SVC	0.870	SVC	362.7	SVC
4	189.7	SVC	0.3	SVC	0.854	SVC	362.7	SVC
5	176.6	SVC	0.3	SVC	0.872	SVC	362.8	SVC
6	174.1	SVC	0.4	SVC	0.855	SVC	362.6	SVC
7	168.1	SVC	0.3	SVC	0.850	SVC	362.5	SVC
8	174.8	SVC	0.3	SVC	0.848	SVC	362.5	SVC
9 10	160.6	SVC	0.3	SVC	0.659	SVC	362.5	SVC
11	151 8	SVC	0.5	SVC	0.862	SVC	362.6	SVC
12	169.8	SVC	0.3	SVC	0.905	SVC	362.8	SVC
13	201.9	SVC	0.4	SVC	0.880	SVC	362.7	SVC
14	237.0	SVC	0.3	SVC	0.864	SVC	362.7	SVC
15	350.2	SVC	0.3	SVC	0.864	SVC	362.5	SVC
16	165.1	SVC	0.1	SVC	0.853	SVC	362.6	SVC
17	141.1	SVC	0.1	SVC	0.844	SVC	362.5	SVC
18	136.8	SVC	0.1	SVC	0.850	SVC	362.4	SVC
19	133.6	SVC	0.2	SVC	0.853	SVC	362.2	SVC
20	185.2	SVC	0.3	SVC	0.843	SVC	362.0	SVC
21	203.8	SVC	0.3	SVC	0.846	SVC	362.0	SVC
22	143 6	SVC	0.5	SVC	0 834	SVC	361.8	SVC
24	148.0	SVC	0.3	SVC	0.837	SVC	361.4	SVC
25	146.2	SVC	0.1	SVC	0.843	SVC	361.3	SVC
26	228.3	SVC	0.1	SVC	0.869	SVC	361.3	· SVC
27	163.5	SVC	0.1	SVC	0.860	SVC	360.9	SVC
28	141.8	SVC	0.3	SVC	0.856	SVC	360.7	SVC
29	139.4	SVC	0.3	SVC	0.859	SVC	360.6	SVC
30	127.2	SVC	0.3	SVC	0.854	SVC	360.4	SVC
31	141.7	SVC	0.3	SVC	0.857	SVC	360.3	SVC
32 22	146 0	SVC	0.3	SVC	0.863	SVC	360'T	SVC
33	154 5	SVC	0.3	SVC	0.852	SVC	359 5	SVC
35	157 4	SVC	0.2	SVC	0.848	SVC	359.4	SVC
36	154.0	SVC	0.3	SVC	0.830	SVC	359.3	SVC
37	229.6	SVC	0.3	SVC	0.829	SVC	359.0	SVC
38	137.6	SVC	0.3	SVC	0.827	SVC	358.9	SVC
39	113.3	SVC	0.3	SVC	0.832	SVC	358.8	SVC
40	122.8	SVC	0.3	SVC	0.846	SVC	358.7	SVC
41	135.8	SVC	0.3	SVC	0.848	SVC	358.5	SVC
42	146.7	SVC	0.3	SVC	0.842	SVC	358.4	SVC
43	196.7	SVC	0.3	SVC	0.832	SVC	358.2	SVC
44	120 7	SVC	0.3	SVC	0.846	SVC	358 0	SVC
45	131 8	SVC	0.3	SVC	0.852	SVC	358 0	SVC
47	125.4	SVC	0.3	SVC	0.801	SVC	357.6	SVC
48	189.2	SVC	0.3	SVC	0.808	SVC	357.5	SVC
49	147.0	SVC	0.3	SVC	0.807	SVC	357.5	SVC
50	132.8	SVC	0.3	SVC	0.805	SVC	357.4	SVC
51	138.0	SVC	0.3	SVC	0.809	SVC	357.3	SVC
52	127.0	SVC	0.3	SVC	0.811	SVC	357.3	SVC
53	141.1	SVC	0.3	SVC	0.800	SVC	357.2	SVC
54	174.5	SVC	0.3	SVC	0.813	SVC	357.2	SVC
55	147.6	SVC	0.3	SVC	0.820	SVC	357.0	SVC
50 57	140 /	SVC	0.3	SVC	0.802	ave	356.9 356 7	SVC
57 58	122 0	SVC	0.3	SVC	0.793	SVC	356 F	SVC
59	174.3	SVC	0.3	SVC	0.791	SVC	356,5	SVC

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Created: 06/27/13 12:35 Unit 1

Hourly One Minute Report	
For 6/27/2013, Hour 11:00	

	PROCESS		OPACITY %		02 %		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
	1 00		1 0		 E 0	SVC	 	 GV/C	~ ~ ~ ~ ~	SVC
1	1 00	SVC	,1.U 1.1	SVC	57	SVC	57.5	SVC	б.) б.)	SVC
2	1.00	SVC	1.3	SVC	5.7	SVC	54.4	SVC	9.7	SVC
3	1.00	SVC	1.1	SVC	6.1	SVC	57.2	SVC	6.5	SVC
4	1.00	SVC	1,2	SVC	6.3	SVC	60.0	SVC	0.6	SVC
5	1.00	SVC	1.0	SVC	6.2	SVC	60.6	SVC	0.0	SVC
6	1.00	SVC	0.9	SVC	6.3	SVC	57.4	SVC	0.8	SVC
7	1.00	SVC	0.9	SVC	6.2	SVC	53.2	SVC	7.3	SVC
8	1.00	SVC	1.0	SVC	5.8	SVC	55.6	SVC	6.8	SVC
9 10	1.00	SVC	1.2	SVC	5.8	SVC	57.4	SVC	/.9	SVC
11	1 00	SVC	±+± 1 1	SVC	59	SVC	60.0	SVC	0 0	SVC
12	1.00	SVC	1.1	SVC	5.9	SVC	58.3	SVC	3.3	SVC
13	1.00	SVC	1.1	SVC	6.1	SVC	57.2	SVC	6.0	SVC
14	1.00	SVC	1.1	SVC	6.1	SVC	60.0	SVC	0.1	SVC
15	1.00	SVC	1.2	SVC	6.1	SVC	58.9	SVC	1.2	SVC
16	1.00	SVC	1.2	SVC	6.1	SVC	58.6	SVC	0.0	SVC
17	1.00	SVC	1.1	SVC	6.2	SVC	58.6	SVC	0.1	SVC
18	1,00	SVC	1.0	SVC	6.1	SVC	54.0	SVC	4.9	SVC
19	1.00	SVC	1.0	SVC	6.U	SVC	55.3	SVC	1.0	SVC
20	1 00	SVC	1.1	SVC	6.2	SVC	59.3	SVC	4.5	SVC
22	1.00	SVC	1.0	SVC	6.0	SVC	59.7	SVC	0.0	SVC
23	1,00	SVC	1.1	SVC	6.0	SVC	55.7	SVC	2.5	SVC
24	1.00	SVC	1.0	SVC	6.0	SVC	54.2	SVC	6.0	SVC
25	1.00	SVC	1.1	SVC	6.1	SVC	55.8	SVC	5.6	SVC
26	1.00	SVC	1.1	SVC	6.3	SVC	57.5	SVC	2,8	SVC
27	1,00	SVC	0.9	SVC	6.4	SVC	58.3	SVC	0.8	SVC
28	1.00	SVC	0.9	SVC	6.0	SVC	57.5	SVC	0.1	SVC
29	1.00	SVC	1.0	SVC	5.9	SVC	51.6	SVC	8.0	SVC
30	1.00	SVC	1.0	SVC	6.0	SVC	57.6	SVC	5.0	SVC
32	1.00	SVC	1.2	SVC	6.5	SVC	59.1	SVC	0.9	SVC
33	1.00	SVC	1.0	SVC	6.5	SVC	59.6	SVC	0.0	SVC
34	1.00	SVC	1.0	SVC	6.4	SVC	55.8	SVC	0.5	SVC
35	1.00	SVC	1.0	SVC	6.2	SVC	49.4	SVC	9.0	SVC
36	1.00	SVC	0.9	SVC	6.3	SVC	52.4	SVC	7.8	SVC
37	1.00	SVC	1.2	SVC	6.3	SVC	55.2	SVC	3.8	SVC
38	1.00	SVC	1.1	SVC	6.2	SVC	56.5	SVC	1.3	SVC
39	1.00	SVC	1.0	SVC	0.4 63	SVC	⊃0.4 53.6	SVC	U.9 5 9	SVC
41	1.00	SVC	1.0	SVC	6.2	SVC	55.0	SVC	4.6	SVC
42	1.00	SVC	1.1	SVC	6.4	SVC	56.5	SVC	2.7	SVC
43	1.00	SVC	1.1	SVC	6.5	SVC	56.6	SVC	0.6	SVC
44	1.00	SVC	1.0	SVC	6.2	SVC	57.8	SVC	0.0	SVC
45	1.00	SVC	1.0	SVC	6.2	SVC	54.4	SVC	2.5	SVC
46	1.00	SVC	1.0	SVC	6.3	SVC	50.5	SVC	12.1	SVC
47	1.00	SVC	1.0	SVC	6.3	SVC	55.3	SVC	4.6	SVC
48	1.00	SVC	1.2	SVC	6.2	SVC	5/.3	SVC	2.2	SVC
49 50	1 00	SVC	1.1	SVC	6.1	SVC	57 5	SVC	1 2	SVC
51	1.00	SVC	1.2	SVC	6.0	SVC	53.5	SVC	7.4	SVC
52	1.00	SVC	1.1	SVC	6.0	SVC	56.3	SVC	6.0	SVC
53	1.00	SVC	1.2	SVC	5.9	SVC	58.8	SVC	2.5	SVC
54	1.00	SVC	1.3	SVC	6.2	SVC	58.5	SVC	3.0	SVC
55	1.00	SVC	1.1	SVC	6.3	SVC	59.6	SVC	0.0	SVC
56	1.00	SVC	1.0	SVC	6.3	SVC	59.9	SVC	0.0	SVC
57	1.00	SVC	1.0	SVC	6.2	SVC	56.0	SVC	3.4	SVC
58 59	1 00	SVC	1.U 1 1	SVC	0.1 2 1	SVC	55.0 56.0	SVC	5.0 7 7	SVC
	T • 00	0,0		0,0	0.1	DVC	0.00	0,0	5.1	DVC

-----Explanation for Status Code------SVC = MONITOR IN SERVICE

_____ CEMDAS(TM) Data Acquisition System

Page 1 of 2

Created: 06/27/13 12:35 Unit 1

Hourly One Minute Report For 6/27/2013, Hour 11:00

Minute	CO PPM 1-Min	Stat	SO2 PPM 1-Min	Stat	DELTA P IWC 1-Min	Stat	TEMP deg F 1-Min	Stat
0	155.5	SVC	0.3	SVC	0.801	SVC	356.3	SVC
T	118.4	SVC	0.3	SVC	0.830	SVC	356.3	SVC
2	134.0	SVC	0.3	SVC	0.836	SVC	356.4	SVC
3	170.2	SVC	0.3	SVC	0.821	SVC	356.4	SVC
4	100.5	SVC	0.3	SVC	0.819	SVC	356.3	SVC
5	141 5	SVC	0.3	SVC	0.808	SVC	356.3	SVC
5	110 /	SVC	0.3	SVC	0.787	SVC	356.2	SVC
,	102 4	SVC	0.3	SVC	0.795	SVC	355.8	SVC
0	104 7	SVC	0.3	SVC	0.803	SVC	355.0	SVC
10	155 8	SVC	0.3	SVC	0.802	SVC	355.0	SVC
11	153 1	SVC	0.5	SVC	0.000	SVC	355 9	SVC
12	124 3	SVC	0.5	SVC	0.000	SVC	355 9	SVC
13	138.8	SVC	0.3	SVC	0.805	SVC	355.6	SVC
14	136.6	SVC	0.3	SVC	0.809	SVC	355.6	SVC
15	132.0	SVC	0.3	SVC	0.806	SVC	355.4	SVC
16	179.6	SVC	0.4	SVC	0,825	SVC	355.6	SVC
17	151.8	SVC	0.4	SVC	0.826	SVC	355.8	SVC
18	134.8	SVC	0.4	SVC	0.824	SVC	355.6	SVC
19	117.4	SVC	0.4	SVC	0.801	SVC	355.6	SVC
20	120.7	SVC	0.3	SVC	0.797	SVC	355.6	SVC
21	174.3	SVC	0.3	SVC	0.804	SVC	355.5	SVC
22	179.9	SVC	0.3	SVC	0.812	SVC	355.6	SVC
23	145.5	SVC	0.3	SVC	0.827	SVC	355.3	SVC
24	135.9	SVC	0.3	SVC	0.818	SVC	355.4	SVC
25	133.8	SVC	0.3	SVC	0.813	SVC	355.4	SVC
26	134.4	SVC	0.4	SVC	0.791	SVC	355.3	SVC
27	168.9	SVC	0.3	SVC	0.794	SVC	355.1	SVC
28	124.5	SVC	0.3	SVC	0.799	SVC	355.1	SVC
29	103.4	SVC	0.3	SVC	0.794	SVC	355.2	SVC
30	101.7	SVC	0.3	SVC	0.806	SVC	355.0	SVC
31	111.1	SVC	0,3	SVC	0.804	SVC	355.0	SVC
32	171.4	SVC	0.3	SVC	0.809	SVC	355.0	SVC
33	228.3	SVC	0.4	SVC	0.803	SVC	355.0	SVC
34	157.4	SVC	0.3	SVC	0.810	SVC	355.1	SVC
35	121 5	SVC	0.3	SVC	0.795	SVC	355.2	SVC
30	111 6	SVC	0.5	SAC	0.780	SVC	355.0	SVC
38	146 7	SVC	0.3	SVC	0.792	5.VC	355.0	SVC
39	142 9	SVC	0,5	SVC	0.804	3VC 9VC	355.0	5VC
40	131.0	SVC	0.3	SVC	0.005	SVC	355 0	SVC
41	127.2	SVC	0.3	SVC	0.790	SVC	355 0	SVC
42	130.2	SVC	0.3	SVC	0.784	SVC	355.0	SVC
43	156.3	SVC	0.3	SVC	0.800	SVC	355.0	SVC
44	197.1	SVC	0.3	SVC	0.809	SVC	355.0	SVC
45	129.4	SVC	0.3	SVC	0.797	SVC	355.0	SVC
46	124.5	SVC	0.3	SVC	0.791	SVC	355.0	SVC
47	124.0	SVC	0.3	SVC	0.793	SVC	355.0	SVC
48	121.9	SVC	0.3	SVC	0.790	SVC	355.0	SVC
49	152.5	SVC	0.3	SVC	0.788	SVC	355.0	SVC
50	125.6	SVC	0.3	SVC	0.798	SVC	355.0	SVC
51	109.3	SVC	0.3	SVC	0.835	SVC	355.0	SVC
52	129.2	SVC	0.3	SVC	0.830	SVC	355.3	SVC
53	133.1	SVC	0.4	SVC	0.833	SVC	355.3	SVC
54	143.8	SVC	0.4	SVC	0.818	SVC	355,4	SVC
55	210.4	SVC	0.3	SVC	0.820	SVC	355.3	SVC
56	144.0	SVC	0.3	SVC	0.791	SVC	355.1	SVC
57	107.1	SVC	0.3	SVC	0.798	SVC	355.0	SVC
58	99.3	SVC	0.3	SVC	0.814	SVC	355.1	SVC
59	108.8	SVC	0.3	SVC	0.802	SVC	355.0	SVC

-----Explanation for Status Code-----SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Hourly One Minute Report For 6/27/2013, Hour 12:00

	PROCESS		OPACITY %		02 %		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
0	1.00	SVC	1.1	SVC	6.1	SVC	57.7	SVC	1.8	SVC
1	1.00	SVC	1.1	SVC	6.U 6 1	SVC	58.4	SVC	2 6	SVC
2	1 00	SVC	1 0	SVC	63	SVC	56 9	SVC	4 4	SVC
4	1.00	SVC	1.0	SVC	6.3	SVC	57.9	SVC	2.0	SVC
5	1.00	SVC	1.1	SVC	6.6	SVC	58.7	SVC	0,5	SVC
6	1.00	SVC	0.9	SVC	6.5	SVC	57.7	SVC	0.0	SVC
7	1.00	SVC	1.0	SVC	6.3	SVC	55.2	SVC	1.2	SVC
8	1.00	SVC	1.0	SVC	6.4	SVC	50.0	SVC	8.0	SVC
9	1.00	SVC	1.0	SVC	6.4	SVC	53.4	SVC	5.3	SVC
10	1.00	SVC	1.1	SVC	6.4	SVC	54.5	SVC	3.8	SVC
11	1.00	SVC	1.0	SVC	6.4	SVC	54.8	SVC	1.7	SVC
12	1.00	SVC	1.0	SVC	6.6	SVC	55.5	SVC	0.2	SVC
14	1.00	5VC	1.1	SVC	6.3 6 1	SVC	53.9	SVC	0.8	SVC
15	1 00	SVC	1 1	SVC	0.4 6 6	SVC	53.1	SVC	48	SVC
16	1.00	SVC	1.1	SVC	6.8	SVC	54.9	SVC	1.3	SVC
17	1.00	SVC	1.0	SVC	6.7	SVC	55.9	SVC	0.0	SVC
18	1.00	SVC	1.0	SVC	6.5	SVC	53.2	SVC	0.7	SVC
19	1.00	SVC	1.0	SVC	6.5	SVC	48.8	SVC	8.4	SVC
20	1.00	SVC	1.0	SVC	6.5	SVC	52.0	SVC	5.3	SVC
21	1.00	SVC	1.2	SVC	6.4	SVC	52.9	SVC	4.4	SVC
22	1.00	SVC	1.1	SVC	6.6	SVC	53.6	SVC	1.5	SVC
23	1.00	SVC	1.0	SVC	6.5	SVC	55.1	SVC	0.0	SVC
24	1.00	SVC	1.0	SVC	6.6	SVC	52.2	SVC	2.8	SVC
25	1.00	SVC	0.9	SVC	6.9	SVC	51.6	SVC	4.5	SVC
26	1.00	SVC	0.9	SVC	. 0.8 67	SVC	53.9	SVC	0.9	SVC
27	1.00	SVC	1.0	SVC	6.7	SVC	52.0	SVC	2.5	SVC
29	1.00	SVC	0.9	SVC	6.4	SVC	53.8	SVC	1.7	SVC
30	1.00	SVC	1.0	SVC	6.3	SVC	50.6	SVC	6.6	SVC
31	1.00	SVC	1.0	SVC	6.3	SVC	53.0	SVC	7.1	SVC
32	1.00	SVC	1.0	SVC	6.4	SVC	55.1	SVC	4.1	SVC
33	1.00	SVC	1.0	SVC	6.4	SVC	55.9	SVC	1.9	SVC
34	1.00	SVC	1.1	SVC	6.1	SVC	56.2	SVC	1.8	SVC
35	1.00	SVC	1.1	SVC	6.1	SVC	54.7	SVC	7.2	SVC
36	1.00	SVC	1.0	SVC	6.2	SVC	56.2	SVC	6.7	SVC
37	1.00	SVC	1.0	SVC	6.2	SVC	58.7	SVC	3.3	SVC
38	1.00	SVC	1.2	SVC	6.I	SVC	59.3	SVC	2.9	SVC
39	1.00	SVC	1.0	SVC	5.0	SVC	58.8	SVC	エ.** ウ 1	SVC
41	1.00	SVC	1.1	SVC	5.5	SVC	55.8	SVC	8.7	SVC
42	1.00	SVC	1.2	SVC	5.8	SVC	58.7	SVC	7.9	SVC
43	1.00	SVC	1.3	SVC	5.7	SVC	61.5	SVC	3.6	SVC
44	1.00	SVC	1.2	SVC	5.9	SVC	63.0	SVC	1.0	SVC
45	1.00	SVC	1.1	SVC	5.9	SVC	62.1	SVC	0.2	SVC
46	1.00	SVC	1.1	SVC	5.9	SVC	60.1	SVC	1.7	SVC
47	1.00	SVC	1.1	SVC	5.8	SVC	58.4	SVC	5.0	SVC
48	1.00	SVC	1.1	SVC	5.8	SVC	59.6	SVC	4.1	SVC
49	1.00	SVC	1.2	SVC	5.8	SVC	59.9	SVC	4.2	SVC
50	1.00 1.00	SVC	1.2	SVC	5.6	SVC	60.9	SVC	0.0	SVC
51 52	1 00	SVC	1.2	SVC	5.0	SVC	57 0	SVC	1.9 7 7	5VC 9VC
52	1 00	3VC 977	⊥.∠ 1 ⊃	SVC	5./ 5.7	2VC	57.2	SVC	/./ 5 1	SVC
54	1 00	SVC	1 7	SVC	5.7 5.6	SVC	60 1	SVC	5.1	SVC
55	1.00	SVC	1.2	SVC	5.7	SVC	61.5	svc	2.5	SVC
56	1.00	SVC	1.1	SVC	5.6	SVC	62.2	SVC	0.0	SVC
57	1.00	SVC	1.2	SVC	5.3	SVC	60.4	SVC	1.0	SVC
58	1.00	SVC	1.1	SVC	5.5	SVC	58.7	SVC	6.0	SVC
59	1.00	SVC	1.1	SVC	5.7	SVC	59.4	SVC	4.1	SVC

-----Explanation for Status Code-----SVC = MONITOR IN SERVICE

Created: 06/27/13 13:20 . Unit 1

Hourly One Minute Report For 6/27/2013, Hour 12:00

	CO PPM		SO2 PPM		DELTA P IWC		TEMP deg F	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
	120 6				0 010			
U 1	132 7	SVC	0.3	SVC	0.818	SVC	355.2	SVC
2	132.0	SVC	0.4	SVC	0.823	SVC	355.6	SVC
3	129.6	SVC	0.3	SVC	0.819	SVC	355.4	SVC
4	123.0	SVC	0.3	SVC	0.811	SVC	355.3	SVC
5	134.1	SVC	0.3	SVC	0.809	SVC	355.1	SVC
6	183.0	SVC	0.3	SVC	0.793	SVC	355.1	SVC
8	124 0	SVC	0.3	SVC	0.800	SVC	355.2	SVC
9	125.1	SVC	0.3	SVC	0.793	SVC	355,1	SVC
10	110.7	SVC	0.3	SVC	0.797	SVC	355.0	SVC
11	121.9	SVC	0.3	SVC	0.797	SVC	355.1	SVC
12	126.5	SVC	0.3	SVC	0.804	SVC	355.3	SVC
13	110 0	SVC	0.3	SVC	0.812	SVC	355.3	SVC
15	130.6	SVC	0.3	SVC	0.810	SVC	355.6	SVC
16	137.2	SVC	0,3	SVC	0.805	SVC	355.4	SVC
17	178.4	SVC	0.1	SVC	0.791	SVC	355.3	SVC
18	113.6	SVC	0.1	SVC	0.785	SVC	355.3	SVC
19	103.7	SVC	0.3	SVC	0.787	SVC	355.3	SVC
20	99.6 112 0	SVC	0.3	SVC	0.797	SVC	355.2	SVC
22	112.0 150.4	SVC	0.3	SVC	0.808	SVC	355.3	SVC
23	150.5	SVC	0.3	SVC	0.805	SVC	355.3	SVC
24	126.6	SVC	0.3	SVC	0.798	SVC	355.4	SVC
25	134.7	SVC	0.2	SVC	0.788	SVC	355.6	SVC
26	122.9	SVC	• 0.1	SVC	0.780	SVC	355.3	SVC
27	105.6 159.9	SVC	U.I 0 3	SVC	0.785	SVC	355.0	SVC
29	113.5	SVC	0.3	SVC	0.786	SVC	355.3	SVC
30	107.5	SVC	0.3	SVC	0.810	SVC	355.3	SVC
31	117.1	SVC	0.3	SVC	0.792	SVC	355.1	SVC
32	125.0	SVC	0.3	SVC	0.783	SVC	355.2	SVC
33	123.1	SVC	0.3	SVC	0.800	SVC	355.3	SVC
35	108.9	SVC	0.3	SVC	0.844	SVC	355 G	SVC
36	119.4	SVC	0.3	SVC	0.791	SVC	355.6	SVC
37	111.8	SVC	0.3	SVC	0.802	SVC	355.6	SVC
38	112.4	SVC	0.3	SVC	0.794	SVC	355.7	SVC
39	146.7	SVC	0.3	SVC	0.785	SVC	355.6	SVC
40 41	96.6	SVC	0.3	SVC	0.786	SVC	355.7	SVC
42	102.1	SVC	0.4	SVC	0.807	SVC	355.6	SVC
43	115.2	SVC	0.4	SVC	0.809	SVC	355.8	SVC
44	137.2	SVC	0.4	SVC	0.812	SVC	356.1	SVC
45	147.0	SVC	0.3	SVC	0.807	SVC	356.3	SVC
46	117.6	SVC	0.3	SVC	0.806	SVC	356.3	SVC
48	103.0	SVC	0.3	SVC	0.792	SVC	356.3	SVC
49	110.3	SVC	0.3	SVC	0.800	SVC	356.4	SVC
50	145.9	SVC	0.4	SVC	0.822	SVC	356.6	SVC
51	137.9	SVC	0.4	SVC	0.812	SVC	356.8	SVC
52	131.7	SVC	0.4	SVC	0.806	SVC	356.9	SVC
54	116.4	SVC	0.4	SVC	0.811	SVC	356 9	SVC
55	126.3	SVC	0.3	SVC	0.826	SVC	356.9	SVC
56	129.5	SVC	0.3	SVC	0.820	SVC	356.9	SVC
57	120.5	SVC	0.3	SVC	0.824	SVC	356.9	SVC
58	128.4	SVC	0.3	SVC	0.830	SVC	356.9	SVC
59	130.6	SVC	0.3	SVC	υ.825	SVC	356,8	SVC

-----Explanation for Status Code-----SVC = MONITOR IN SERVICE
Hourly One Minute Report For 6/27/2013, Hour 08:00

	PROCESS		OPACITY %		02 %		NOX PPM		NH3 PPM	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
	1.00	SVC	1.8	SVC	5.2	SVC	47.3	SVC	5.6	SVC
ĩ	1.00	SVC	1.8	SVC	5,1	SVC	51.8	PRG	0.0	PRG
2	1.00	SVC	1.8	SVC	5.1	SVC	48.6	PRG	0.1	PRG
3	1,00	SVC	2.0	SVC	5.0	SVC	13.2	PRG	28.9	PRG
4	1,00	SVC	1.9	SVC	5.2	SVC	17.6	PRG	36.6	PRG
5	1.00	SVC	1.7	SVC	5.0	SVC	43.8	NSA	2.1	NSA
ь 7	1.00	SVC	1.1	SVC	5.1	SVC	42.9	NSA	1.1	NSA
8	1.00	SVC	1.4	SVC	5.0	SVC	36.4	NSA	79	NSA
9	1.00	SVC	1.4	SVC	4.8	SVC	42.4	NSA	4.6	NSA
10	1.00	SVC	1.5	SVC	4.6	SVC	40.9	SVC	7.8	SVC
11	1.00	SVC	1.6	SVC	4.7	SVC	43.1	SVC	6.8	SVC
12	1.00	SVC	1.5	SVC	4.7	SVC	45.1	SVC	2.0	SVC
13	1.00	SVC	1.6	SVC	4.6	SVC	46.7	SVC	1.9	SVC
15	1 00	SVC	1.4 1.4	SVC	4.9	SVC	44./	SVC	4./ 4.4	SVC
16	1.00	SVC	1.3	SVC	5.1	SVC	47.5	SVC	0.0	SVC
17	1.00	SVC	1.3	SVC	5.0	SVC	47.1	SVC	0.0	SVC
18	1.00	SVC	1.5	SVC	5.1	SVC	43.9	SVC	2.7	SVC
19	1.00	SVC	2.0	SVC	5.3	SVC	43.5	SVC	4.5	SVC
20	1.00	SVC	1.7	SVC	5.8	SVC	45.2	SVC	1.8	SVC
21	1.00	SVC	1.4	SVC	5.4	SVC	45.3	SVC	0.0	SVC
22	1.00	SVC	1.3	SVC	5.1	SVC	38.7	SVC	2.0 9.4	SVC
24	1.00	SVC	1.3	SVC	5.1	SVC	37.9	SVC	5.3	SVC
25	1.00	SVC	1.3	SVC	5.2	SVC	40.2	SVC	6.2	SVC
26	1.00	SVC	1.4	SVC	5.1	SVC	40.6	SVC	5.9	SVC
27	1.00	SVC	1.4	SVC	5.2	SVC	42.6	SVC	2.3	SVC
28	1.00	SVC	1.5	SVC	4.9	SVC	43.3	SVC	0.8	SVC
29	1.00	SVC	1.4	SVC	4.9	SVC	41.1	SVC	0.9	SVC
30	1.00	SVC	1.4	SVC	4.9 1 q	SVC	40.4	SVC	∠.3 1 0	SVC
32	1.00	SVC	1.4	SVC	4.9	SVC	40.1	SVC	0.6	SVC
33	1.00	SVC	1.4	SVC	4.9	SVC	39.6	SVC	1.3	SVC
34	1.00	SVC	1.5	SVC	5.0	SVC	38.8	SVC	3.3	SVC
35	1.00	SVC	1.3	SVC	5.2	SVC	38.9	SVC	1.9	SVC
36	1.00	SVC	1.2	SVC	5.1	SVC	39.5	SVC	2.0	SVC
37	1.00	SVC	1.3	SVC	5.0	SVC	38.6	SVC	5.7	SVC
20	1.00	SVC	1.4	SVC	5.0 4 9	SVC	29.0 41 8	SVC	2.9	SVC
40	1.00	SVC	1.5	SVC	4.9	SVC	42.4	SVC	0.4	SVC
41	1.00	SVC	1.6	SVC	4.8	SVC	41.0	SVC	1.3	SVC
42	1.00	SVC	1.6	SVC	4.9	SVC	40.5	SVC	2.1	SVC
43	1.00	SVC	1.6	SVC	4.9	SVC	40.7	SVC	0.6	SVC
44	1.00	SVC	1.4	SVC	4.9	SVC	40.5	SVC	1.3	SVC
45	1.00	SVC	1.4	SVC	5.0	SVC	38.0	SVC	5.6	SVC
40	1.00	SVC	1.6	SVC	4.9	SVC	39.0 40.6	SVC	3./	SVC
48	1.00	SVC	1.3	SVC	5.2	SVC	39.9	SVC	1.9	SVC
49	1.00	SVC	1.2	SVC	5.6	SVC	38.7	SVC	5.6	SVC
50	1.00	SVC	1.3	SVC	5.7	SVC	40,0	SVC	3.0	SVC
51	1.00	SVC	1.1	SVC	5.7	SVC	41.3	SVC	0.0	SVC
52	1.00	SVC	1.2	SVC	5.5	SVC	39.6	SVC	0.9	SVC
53	1.00	SVC	1.2	SVC	5.6	SVC	35.6	SVC	6.7	SVC
54 55	1 00	SVC	1 1	SVC	5.6 5.6	SVC	/./ ۲ ۵	SVC	5.5	5VC
56	1.00	SVC	1.0	SVC	5.7	SVC	38.9	SVC	0.3	SVC
57	1.00	SVC	1.1	SVC	5.4	SVC	36.0	SVC	4.1	SVC
58	1.00	SVC	1.1	SVC	5.5	SVC	36.6	SVC	4.6	SVC
59	1.00	SVC	1.2	SVC	5.2	SVC	37.1.	SVC	5.4	SVC

-----Explanation for Status Code-----

PRG = PROBE PURGING

NSA = NO SAMPLE AVAILABLE SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Page 1 of 2

Fitchburg

Created: 06/27/13 12:35

Unit 1

Hourly One Minute Report For 6/27/2013, Hour 08:00

	CO PPM		SO2 PPM		DELTA P IWC		TEMP deg F	
Minute	1-Min	Stat	1-Min	Stat	1-Min	Stat	1-Min	Stat
	105 1	evic	0 7	 GV/C		 CV/C	2 5 0 7	
1	24.4	PRG	0.3	PRG	0.0906	SVC	350.7	SVC
2	186 6	PRG	0.3	PRG	0.900	SVC	351 8	SVC
3	334.7	PRG	0.3	PRG	0.916	SVC	352.5	SVC
4	398.3	PRG	0.2	PRG	0.925	SVC	352.9	SVC
- 5	355.9	NSA	0.2	NSA	0.933	SVC	353.5	SVC
6	275.8	NSA	0.1	NSA	0.904	SVC	353.9	SVC
7	306.2	NSA	0.1	NSA	0.888	SVC	354.3	SVC
8	449.9	NSA	0.1	NSA	0.884	SVC	354.5	SVC
9	248.8	NSA	0.1	NSA	0.872	SVC	354.9	SVC
10	251.0	SVC	0.1	SVC	0.883	SVC	355.2	SVC
11	302.8	SVC	0.1	SVC	0.876	SVC	355.5	SVC
12	350.7	SVC	0.2	SVC	0.892	SVC	355.9	SVC
13	311.1	SVC	0.2	SVC	0.906	SVC	356.5	SVC
15	101 0	SVC	0.2	SVC	0.881	SVC	356.9	SVC
16	101.U 219 8	SVC	0.5	SVC	0.879	SVC	357.1	SVC
.17	183 4	SVC	0.1	SVC	0.878	SVC	357.5	SVC
18	185.7	SVC	0.1	SVC	0.902	SVC	358 4	SVC
19	215.5	SVC	0.1	SVC	0.939	SVC	358.9	SVC
20	378.3	SVC	0.2	SVC	0.953	SVC	359.4	SVC
21	421.0	SVC	0.1	SVC	0.928	SVC	359.9	SVC
22	299.6	SVC	0.1	SVC	0.926	SVC	360.2	SVC
23	280.1	SVC	0.1	SVC	0.919	SVC	360.4	SVC
24	275.4	SVC	0.1	SVC	0.936	SVC	360.8	SVC
25	235.0	SVC	0.1	SVC	0.925	SVC	361.3	SVC
26	207.0	SVC	0.1	SVC	0.927	SVC	361.4	SVC
27	278.7	SVC	0.1	SVC	0.923	SVC	361.8	SVC
28	306.1	SVC	0.2	SVC	0.931	SVC	362.2	SVC
29	414.0	SVC	0.2	SVC	0.908	SVC	362.5	SVC
30	455.8	SVC	0.2	SVC	0.907	SVC	362.5	SVC
31	423.3	SVC	0.2	SVC	0.914	SVC	362.7	SVC
32	511.8	MOR	0.1	SVC	0.927	SVC	362.9	SVC
30	JII.0 /51 2	SVC	0.1	SVC	0.927	SVC	363.Z	SVC
35	441 7	SVC	0.1	SVC	0.913	SVC	363.4	SVC
36	296.1	SVC	0.1	SVC	0.892	SVC	363.8	SVC
37	222.2	SVC	0.1	SVC	0.899	SVC	364.0	SVC
38	251.5	SVC	0.1	SVC	0.922	SVC	364.0	SVC
39	414.7	SVC	0.1	SVC	0.940	SVC	364.1	SVC
40	392.4	SVC	0.1	SVC	0.951	SVC	364.5	SVC
41	435.0	SVC	0.1	SVC	0.961	SVC	364.9	SVC
42	511.8	MOR	0.1	SVC	0.948	SVC	365.1	SVC
43	462.6	SVC	0.1	SVC	0.978	SVC	365.3	SVC
44	434.7	SVC	0.1	SVC	0.965	SVC	365.6	SVC
45	395.2	SVC	0.1	SVC	0.966	SVC	365.9	SVC
46	407.2	SVC	0.0	SVC	0.976	SVC	366.3	SVC
4.7	429.0	SVC	0.0	SVC	0.966	SVC	366.3	SVC
48	342.7	SVC	0.1	SVC	0,948	SVC	366.5	SVC
49	251.5	SVC	0.1	SVC	0.94/	SVC	366.3	SVC
50	∠⊥0.) 288 Q	SVC	0.1	376 577	0,928	SVC	366 3	SVC
52	192 5	SVC	0.1	SVC	0.919	SVC	366 5	SVC
53	160.0	SVC	0.1	SVC	0.893	SVC	366 F	SVC
54	219.7	SVC	0.1	SVC	0,890	SVC	366.7	SVC
55	280.3	SVC	0.1	SVC	0.856	SVC	366.6	SVC
56	204.4	SVC	0.0	SVC	0,841	SVC	366.4	SVC
57	172.4	SVC	0.1	SVC	0.837	SVC	366.1	SVC
58	220.6	SVC	0.1	SVC	0.847	SVC	365.7	SVC
59	181.7	SVC	0.1	SVC	0.862	SVC	365.6	SVC

-----Explanation for Status Code-----PRG = PROBE PURGING

NSA = NO SAMPLE AVAILABLE

MOR = MONITOR OUT OF RANGE

SVC = MONITOR IN SERVICE

Appendix N

NOZZLE CALIBRATION DATA

FACILITY: Pinetree Fitchburg DATE: 6-26-13

NOZZLE ID: SS - TFE - f - 1

DIAMETER #	INSIDE DIAMETER (in)
1	0.251
2	0.250
3	0.250
AVERAGE	0.210

NOZZLE ID: <u>*PMIO* -3 - /</u>

DIAMETER #	INSIDE DIAMETER (in)
1	0.165
2	0.166
3	0.166
AVERAGE	0.166

NOZZLE ID: PM10-3-2

DIAMETER #	INSIDE DIAMETER (in)
1	0-166
2	0.165
3	6.167
AVERAGE	0.166

NOTE: The difference between inside diameters shall not exceed 0.004 inches

Fattors/Conversions Fattors/Conversions 528 "R Prees 29.92 In Hg Prees 17.647 ORIN Hg	Antima France Antima An	
	Attribute Contract Annual Contract Interse Bes Bes Bes Bes Bes Contact	
ICES ICES IT 20 IT	Connections Connections and attract D att	a time a state Man Na State
CONSOLE CALIB D CRITICAL ORIF GLISH UNITS In Centerine 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 13.92 14.92	Reference Reference Reference Commission Commissio	te Precision Wer Te Trie Burneu of Stan
OD 5 PRE-TEST ING CALIBRATEL 6-POINT EN Calibration Ca	Counti Turne Tu	(20 Fart Sti uning) se extre 10 fhe ham
METH US Den Den Den Den Den Den Den Den Den Den	Calibrat Taraya Adama Arana Adama Arana Adama Arana Baraa Tri Tri Tri Tri Tri Tri Tri Tri Tri Tri	ar Prior which is t
t o 2 in. Hg greate	Mean-1-10 Connect Franti Frantiti	istriction and lit
ALLE ALLE ALLE ALLE ALLE ALLE ALLE ALLE	Minimum Minimum Minimum Tela Tool Tela Tool Tela Tool Tela Cool Tela C	s' mak calificated (h Arnast: an Eigt Shi
under sold hours maint maint hubs, the Actual Vi e Coefficient, K, mu	Standar 2.20 2.20 2.20 2.20 2.20 2.20 3.40 3.40 0.326 0.326 0.518 0.695 0.695 0.695 0.695 0.695	terre Cry Clar Mette vial brand uning the
Consults Miner Mu Consults Miner Mu Consults Miner Mu Cold Miner Muner Cold Safes Manter For welld test res	Bit These Distribution Distribution 10.0 10.5 10.5 10.5 10.5 11.190 Notes For Calibratio	r certify (the the a which in turn war

DATE: 4/4/2013

TECHNICIAN: CS

ALL READINGS IN DEGREES FARENHEIGHT

T.C. ID	ASSET	ICE	ACTUAL	BOILING	ACTUAL	% DIFF	% DIFF	RESULT
	NUMBER	WATER	RESPONSE	WATER	RESPONSE	LOW	HIGH	
M5-3-1	0115	32.2	32.2	212.0	213.0	0.00	0.47	PASS
M5-3-2	0116	32.1	32.0	212.0	212.0	0.31	0.00	PASS
M5-3-3	0117	32.1	32.1	212.0	211.0	0.00	0.47	PASS
M5-3-4	0118	32.1	32.1	212.0	212.0	0.00	0.00	PASS
M5-5-1	0114	32.1	32.2	212.0	213.0	0.31	0.47	PASS
M5-5-2	0122	32.1	32.3	212.0	213.0	0.62	0.47	PASS
M5-6-1	0112	32.2	32.2	212.0	210.0	0.00	0.94	PASS
M5-7-2	0113	32.2	32.2	212.0	211.0	0.00	0.47	PASS
M5-7-3	0110	32.2	32.0	212.0	212.0	0.63	0.00	PASS
M5-7-4	0111	32.2	32.2	212.0	212.0	0.00	0.00	PASS
M5-7-HH	0134	32.1	32.3	212.0	212.0	0.62	0.00	PASS
M5INC-7-1	0123	32.0	32.2	212.0	212.0	0.62	0.00	PASS
M5INC-7-2	0124	32.1	32.3	212.0	211.0	0.62	0.47	PASS
M5-8-1	0108	32.1	32.1	212.0	212.0	0.00	0.00	PASS
M5-8-2	0109	32.1	32.1	212.0	212.0	0.00	0.00	PASS
M5-9-1	0107	32.1	32.0	212.0	212.0	0.31	0.00	PASS
M5-10-1	0106	32.1	32.4	212.0	213.0	0.93	0.47	PASS
M5-12-1	0130							
M5-13-1	0105							
M5-16-1	0131							
M5-16-2	0132	32.2	32.1	212.0	212.0	0.31	0.00	PASS
M5-16-3	0133	32.2	32.4	212.0	212.0	0.62	0.00	PASS
TF-7	0125	32.1	32.2	212.0	212.0	0.31	0.00	PASS
TF-TELE	0126							
TF-9	-							Ļ
TF-10	-	32.1	32.2	212.0	213.0	0.31	0.47	PASS
TF-11-1	0135	32.2	32.1	212.0	211.0	0.31	0.47	PASS

DATE: 4/4/2013

TECHNICIAN CS

T.C. ID	ASSET	ICE	ACTUAL	BOILING	ACTUAL	% DIFF	% DIFF	RESULT
	NUMBER	WATER	RESPONSE	WATER	RESPONSE	LOW	HIGH	
FIA-1	0052	32.0	32.1	212	212	0.31	0.00	PASS
		32.0	32.1	212	212	0.31	0.00	PASS
FIA-2	0053	32.0	32.1	212	212	0.31	0.00	PASS
		32.0	32.2	212	212	0.62	0.00	PASS
FIA-3	0054	32.0	32.2	212	211	0.62	0.47	PASS
		32.0	32.0	212	211	0.00	0.47	PASS
FIA-4	0055	32.0	32.0	212	213	0.00	0.47	PASS
		32.0	32.2	212	212	0.62	0.00	PASS
FIA-5	0056	32.0	32.1	212	213	0.31	0.47	PASS
		32.0	32.0	212	213	0.00	0.47	PASS
FIA-6	0057	32.0	32.3	212	211	0.93	0.47	PASS
		32.0	32.4	212	211	1,23	0.47	PASS
MB-1	0001	32.0	32.1	212	213	0.31	0.47	PASS
DGM IN		32.0	32.2	212	212	0.62	0.00	PASS
MB-1		32.0	32.2	212	213	0.62	0.47	PASS
DGM OUT		32.0	32.2	212	213	0.62	0.47	PASS
MB-2	0002	32.0	32.1	212	212	0.31	0.00	PASS
DGM IN		32.0	32.2	212	211	0.62	0.47	PASS
MB-2		32.0	32.0	212	211	0.00	0.47	PASS
DGM OUT		32.0	31.9	212	211	0.31	0.47	PASS
MB-3	0003	32.0	32.0	212	212	0.00	0.00	PASS
DGM IN		32.0	32.1	212	212	0.31	0.00	PASS
MB-3		32.0	32.0	212	212	0.00	0.00	PASS
DGM OUT		32.0	31.9	212	210	0.31	0.94	PASS
MB-4	0004	32.0	32.1	212	210	0.31	0.94	PASS
DGM OUT		32.0	31.9	212	210	0.31	0.94	PASS
AUX		32.0	32.3	212	213	0.93	0.47	PASS
		32.0	32.2	212	213	0.62	0.47	PASS

ALL READINGS IN DEGREES FARENHEIGHT

360 Old Colony Road, Suite 1, Norton, MA 02766

DATE: 4/4/2013 TECHNICIAN JJ

T.C. ID	AMBIENT	ACTUAL	BOILING	ACTUAL	% DIFF	% DIFF	RESULT
	WATER	RESPONSE	WATER	RESPONSE	LOW	HIGH	
TF-3'	32	32.2	212	212	0.62	0.05	PASS
	32	32.0	212	212	0.00	0.05	PASS
TF-5'	32	32.1	212	211	0.31	0.47	PASS
	32	32.2	212	211	0.62	0.47	PASS
TF-7-1-SS	32	32.0	212	210	0.00	0.94	PASS
	32	32.1	212	211	0.31	0.47	PASS
TF-10-1-ADJ'	32	32.0	212	210	0.00	0.94	PASS
	32	32.2	212	211	0.62	0.47	PASS

ALL READINGS IN DEGREES FARENHEIGHT

360 Old Colony Road, Suite 1, Norton, MA 02766

DATE: 4/4/2013 TECHNICIAN CS

Ser. # ICE ACTUAL BOILING ACTUAL % DIFF % DIFF RESULT T.C. ID RESPONSE LOW WATER RESPONSE WATER HIGH 0.62 0.00 PASS 501 32.0 32.2 212 212 IS-1 PASS 32.0 32.2 212 211 0.62 0.47 PASS 2206 212 0.00 0.00 IS-2 32.0 32.0 212 PASS 0.00 0.00 32.0 32.0 212 212 0.00 PASS 0.93 OFFSET-1 32.0 32.3 212 212 0.47 32.3 213 0.93 PASS 32.0 212 PASS 708 OFFSET-2 32.2 212 211 0.62 0.47 32.0 0.47 PASS 32.0 32.2 212 211 0.62 PASS 0.62 0.47 OFFSET-3 32.0 32.2 212 211 32.0 32.3 212 211 0.93 0.47 PASS 0.94 PASS 183 OFFSET-4 32.0 31.9 212 210 0.31 PASS 0.00 0.00 32.0 32.0 212 212 454 212 1.23 0.00 PASS OFFSET-5 32.0 32.4 212 0.47 PASS 32.0 32.4 212 213 1.23 PASS 210 0.31 0.94 459 OFFSET-6 32.0 32.1 212 0.94 PASS 32.2 210 0.62 32.0 212 0.94 PASS 709 OFFSET-7 32.0 32.0 212 214 0.00 PASS 0.47 213 0.31 32.0 31.9 212 212 0.00 0.00 PASS OFFSET-8 32.0 32.0 212 0.31 0.47 PASS 32.0 31.9 211 212 32.0 32.1 212 211 0.31 0.47 PASS FH-1 32.0 32.1 212 212 0.31 0.00 PASS 0.47 PASS 213 0.93 FH-2 32.0 32.3 212 0.47 PASS 213 0.93 32.0 32.3 212 FH-3 32.0 32.0 212 212 0.00 0.00 PASS 0.94 PASS 0.31 32.0 32.1 212 210 0.00 PASS 212 0.00 GLASS-1 32.0 32.0 212 32.0 32.0 212 211 0.00 0.47 PASS 0.00 PASS GLASS-2 212 212 0.93 32.0 32.3 PASS 0.47 0.93 32.0 32.3 212 213 PASS 32.0 212 212 0.00 0.00 GLASS-3 32.0 PASS 32.0 32.0 212 213 0.00 0.47 PASS 0.31 0.94 GLASS-4 32.0 32.1 212 214 0.62 0.94 PASS 32.2 212 214 32.0 0.47 PASS 212 213 0.31 VOST 1 32.0 31.9 212 0.31 0.00 PASS 32.0 31.9 212 0.94 PASS 210 VOST-2 32.0 31.9 212 0.31 0.31 0.94 PASS 210 32.0 32.1 212 PASS 210 0.00 0.94 OFFSET-9-32.0 32.0 212 0.31 0.94 PASS SHORT 32.0 32.1 212 210

212

212

32.1

32.2

212

212

0.31

0.62

0.00

0.00

PASS

PASS

ALL READINGS IN DEGREES FARENHEIGHT

5122

5049

OFFSET-10-

SHORT

32.0

32.0

GLASS-5-	32.0	32.1	212	212	0.31	0.00	PASS
SHORT	32.0	32.1	212	212	0.31	0.00	PASS
GLASS-6-	32.0	32.0	212	212	0.00	0.00	PASS
SHORT	32.0	31.8	212	212	0.63	0.00	PASS

i.

360 Old Colony Road, Suite 1, Norton, MA 02766

S - TYPE PITOT GEOMETRIC CALIBRATION

PROBE IDENTIFICATION:	M5-7-2
PITOT IDENTIFICATION:	12-1
TECHNICAL SPECIALIST:	CS
CALIBRATION DATE:	5/2/2013

PART 1 - PROBE CONFIGURATION

			RESULT
A.	Dt=	0.373	PASS
	Dn =	0.500	PASS
	a =	0.985	PASS
В.	Pa=	0.504	SEE PART-2
	Pb =	0.510	SEE PART-2
	b =	1.454	PASS
c	o –	2 115	DASS
U.	ر — س		
	a = _	7.02	PA55
	e=_	0.86	<u>PASS</u> _
D.	c =	NA	NA
	f =	NA	NA

PART 2 - PITOT ALIGNMENT

			RE	<u>SULT</u>
A.	a=	0.912		
	b=	0.366		
	c=	0.959		
	d=	0.373		
	e=	0.97		
		86.05		PASS
	'=	87.48	-	PASS
B.	a=	0.886		
	b=	0.488	-	
	c=	0.979		
	d=	0.482		
	e=	1.030	_	
)= 	85.71		PASS
	>'= _	92.92	<u></u>	PASS
C.	f=_	0.030		PASS
D.	g=_	0.00		PASS

SPECIFICATIONS (EPA Method #2)		SPECIFICATIONS (EPA Method #2)
Dt = 3/16" to 3/8"	b >= 0	80ø '< 100ø</td
Dn = 1/2"	c,d >= 3"	85ø<>//'< 95ø
Pa = Pb	f >= 2"	f < 1/8"
a,e >= 3/4"		g < 1/32"

 * Slight misalignments of the openings are permissible.
 If PART 2 - PITOT ALIGNMENT specifications are met, then these will not effect the baseline value of Cp(s).

*

Environmental Supply Company, Inc.

Quality Source Sampling Systems & Accessories

Wind Tunnel Pitot Calibration

S-type Pitot ID:	P-749	Date:	26-Jul-12	
Standard Pitot ID:	RE2-20	Personnel:	BR	
Cp(std):	0.99	Cp(actual):	0.770	
Part Number:	PPS12-Y-PM1025	P(bar):	29.61	
Test Velocity (fps):	50	T(°F):	89	
Wind Tunnel Location:	Wake Forest, NC	Tunnel Size:	30" x 36"	

ш	ΔP _{std} (in H-0)	ΔP, (in H ₂ 0)	Cp(s)	Deviation*
SID	0,423	0.697	0.772	0.002
5-1	0.420	0.697	0.769	-0.001
	0.420	0.693	0.770	0.000
		AVERAGE	0.770	0.001
		Lawrence of the second se	Std deviation	0.002

NOTES:

1. Pitot calibrated with an Environmental Supply Co. PM10 cyclone.

- 2. C_p is only valid when used with PM10 cyclone.
- 3. C_p is only valid with 1" spacing from PM10 cyclone.

$$Cp(s) = Cp(std) \sqrt{\frac{\Delta P(std)}{\Delta P(s)}}$$

*Deviation = $\{Cp(s) - AVGCp(s)\}$ {must be <0.010}

Standard deviation of the deviations must be less than 0.02 for both sides.

Pitot tube S/N P-749 was calibrated in accordance with the CFR 40, Part 60 Appendix A, Method 2, Section 10.

5 m Signature

7/12

2142 E. Geer Street, Durham, North Carolina 27704

www.environsupply.com

919-956-9688 FAX: 919-682-0333

Auditor: CP Date: 10/5/2012 Vehicle: T4 Asset #: 69

	191.5 CO / 192.5 NOx / 196.7 SO2				
S/N	Туре	Zero	Response	% Diff	Range
04902C1-2668	02	0.08	0.03	0.2%	25
04902C1-2668	CO2	0.00	-0.04	0.2%	20

Servomex O2/CO2 Monitor

Auditor:	СР
Date:	9/13/2012

 Vehicle:
 T2

 Asset #:
 0025

	22.7	02/19.77	CO2		
S/N	Туре	Zero	Response	% Diff	Range
48-40156-262	CO	0.09	-0.315	0.2%	200

	44.0 NOx / 109.9 SO2				
S/N	Туре	Zero	Response	% Diff	Range
48-40156-262	CO	0.09	0.09	0.0%	200

TECO 48H CO Monitor

Auditor:	СР		Vehicle:	T5	
Date:	10/5/2012		Asset #:	0071	
Γ	22.6	02/19.6	5 CO2		
S/N	Туре	Zero	Response	% Diff	Range
93-721M-8072-8	SO2	-0.2	-0.2	0.0%	100

		227 CO			
S/N	Туре	Zero	Response	% Diff	Range
93-721M-8072-8	SO2	-0.2	-0.1	0.1%	100

		110 NOX			
S/N	Туре	Zero	Response	% Diff	Range
93-721M-8072-8	SO2	-0.2	0.1	0.3%	100

Western Research 721 SO2 Rack 1 Trailer 5

Auditor:	CP
Date:	6/15/2013

Vehicle: T5 Asset #: 0072

10.01% O2 / 10.96% CO2 / 1140 CO / 221 SO2								
S/N	Туре	Zero	Response	% Diff	Range			
42H-38654-258	NOx	0.01	0.22	0.1%	200			

	22.8%	02/19.829			
S/N	Туре	Zero Response		% Diff	Range
42H-38654-258	NOx	0.01	0.01	0.0%	200

TECO 42H NOx Rack 1 Trailer 5

Auditor: CP Date: 6/15/2013

Vehicle: T5 Asset #: 0073

	22.8%	02 / 19.82	% CO2		
S/N	Туре	Zero	Response	% Diff	Range
N4J3890T	CO	-1.11	-0.67	0.0%	2000

	44.5				
S/N	Туре	Zero	Response	% Diff	Range
N4J3890T	CO	-1.110	-1.45	0.0%	2000

California Analytical ZRH CO Rack 1 Trailer 5

Appendix O

DEFINITION OF ABBREVIATIONS

ACFM	Flowrate reported in actual cubic feet per minute
Δn	Area of the nozzle cross-sectional in square feet
Δs	Area of the stack in square feet
BWO	Water vapor in gas stream, proportional by volume
00	Percent error confidence coefficient (one tailed)
Cd	Conversion calibration for concentration (PPMdy to lbs/SCE)
Caas	Einal emissions data reported by CEMS, adjusted for calibration drift. Reported as nom dry
Ugao	proportional by volume
Cm	Average CEM response to initial and final span gas system calibration
Cma	Concentration of the calibration dases
Co	Average CEM response to initial and final zero gas system calibration
Craw	Raw emissions data reported by the CEMS uncorrected for calibration drift
Cwet	Final emissions data reported by CEMS, adjusted for calibration drift and water vanor
01101	Reported as nom wet, proportional by volume
% CO	Percent of carbon monoxide in the flue gas
% CO.	Percent of carbon dioxide in the flue gas
Cn	Pitot tube coefficient
Cs	The concentration in the stack in nounds per standard cubic foot
Ce'	The concentration in the stack in grains per standard cubic foot
Cs' @ 12%	The concentration in the stack in grains per dry standard cubic feet corrected to 12% CO ₂
DELTAH	The pressure differential across orifice meter, reported in inches of H_2O
DELTA H(ABS)	The pressure differential across orifice meter, absolute conditions in inches of mercury.
Dn (IN)	Diameter of the nozzle in inches.
DGM IN	Temperature of the dry gas meter inlet, reported in degrees Fahrenheit.
DGM OUT	Temperature of the dry gas meter outlet, reported in degrees Fahrenheit.
Ds (FT)	Diameter of the stack in feet.
DSCFH	Dry standard cubic feet per hour.
DSCFM	Dry standard cubic feet per minute.
DSCMH	Dry standard cubic meters per hour.
E	Emission rate in pounds per million Btu using F Factor of fuel burned.
END METER	The dry gas meter reading at the end of the test.
F FACTOR	The theoretical amount of air in dry standard cubic feet (DSCF) needed to combust a million Btu's
	worth of fuel.
GR/BHP-HR	Grams per brake horsepower hour.
IMP(FIN)	Final volume of absorbing solution in impinger.
IMP(INT)	Initial volume of absorbing solution in impinger.
INT METER	The dry gas meter reading at the beginning of the test.
% ISO	Variation of sampling from isokinetic conditions.
LB/HR	Pounds per hour.
LB/MMBTU	Pounds per million British Thermal Unit.
LB/SCF	Pounds per standard cubic foot.
Md (DRY)	The dry molecular weight of the flue gas in pounds per pound mole.
MI (MAC	Volume in milliliters.
Mg/M3	Milligrams per cubic meter.
	Total particulate found in sample minus the acetone residue (blank). Reported in milligrams.
IVIS (VVEI)	Wet or actual molecular weight of the flue gas in pounds per pound mole.
0/ MIJ	The persent of nitrogen in the flue gen
10 INZ	Number of traverse points
% 02	Number of Laverse points. % ovvigen in the flue gas
PRAR	Barometric pressure at test location
	Pitot tube coefficient (S Type= 84_standard= 99)
PPM	Parts per million
6 5 191	

••

DEFINITION OF ABBREVIATIONS

PPMdv	Parts per million - dry volume.
PPMwv	Parts per million - wet volume.
P STK	Static pressure of the stack in inches of water.
PMR	The pollutant mass rate in pounds per hour.
PS (ABS)	Absolute stack pressure in inches of mercury.
Pstd	Standard absolute pressure, (29.92 in. Hg).
Qs	The volumetric flow rate of the flue gas in dry standard cubic feet per hour.
RA	Relative accuracy.
RATA	Relative accuracy test audit.
RM	Reference Method.
Sd	Emission standard (allowable emission rate).
SQ ROOT	The square root of each velocity head measurement (Delta P).
SQRT DELTA P	The average of the square roots of the measured pressure drops.
Stack Temp	The temperature of the stack in degrees (°F) Fahrenheit.
TM (°F)	Average temperature of the dry gas meter in degrees Fahrenheit.
TM (°R)	Average temperature of the dry gas meter in degrees Rankine.
TS (°R)	The temperature of the stack in degrees Rankine.
VEL HEAD	The pressure drop measured across the pitot tubes.
VI (TOT)	The amount of water collected in the impingers in milliliters.
VM (CF)	The volume sampled through the dry gas meter in cubic feet.
VM STD	Volume sampled through the dry gas meter corrected to standard conditions.
VOC	Volatile organic compounds
VS	Velocity of the stack gas in feet per second.
VW STD	The amount of moisture collected, corrected to standard conditions.
Y	Dry gas meter calibration factor.

	GSI Emission Chart 20					FITCHBURG			
2013	Operation Hours	Generation Gross MWł	Generation Net MWh	CO Tons	CO Ibs.	CO lb/MWh	NOX Tons	NOX lbs.	
July August Septembe	639.1 715.0 r 660.4	10108.8 11437.3 10931.6	8846.7 9330.0 9654.4	19.3 19.6 17.1	38696.27 39112.08 34187.18	4.374 4.192 3.541	6.5 6.4 6.3	12932.44 12704.3 12579.39	
Total	2014.49	32477.73	27831.1	55.99776	111995.5	4.024	19.10806	38216.13	

				MSS 538			CT?)			
NOX lb/MMbtu	NOX Ibs/hr		Heat Input	SOX lb/MWh	SOX Tons		SO) Ibs.	K	Particulate Ib/MWh	Particulate Tons	Particulate :lbs.
0.069	1	18.3	264.555	0.0293		0.15		296.30	0.0253	0.2397	479.31

0.069	18.3	264.555	0.0293	0.15	296.30	0.0253	0.2397	479.31
0.064	17.7	275.375	0.0311	0.18	356.10	0.0250	0.2681	536.26
0.064	17.7	275.130	0.0400	0.22	436.83	0.0242	0.2477	495.30
0.066	17.92	271.687	0.033	0.1732	1089.23	0.025	0.7554	1510.87

Mercury lb/MWh

> 0.000073 0.000078 0.000069 0.000073

360 Old Colony Road, Suite 1 Norton, MA 02766 508-226-6700

PINETREE POWER FITCHBURG, LP WESTMINSTER, MASSACHUSETTS **DIAGNOSTIC EMISSIONS TEST PROGRAM**

JUNE 2013

Source Designation:

Pinetree Power Fitchburg LP Wood Fired Boiler 2 Rowtier Dr. Westminster, Massachusetts 01473

> Concerning: Emission Testing for

> PM, NOx, CO, NH3

Prepared for:

Pinetree Power Fitchburg LP 2 Rowtier Dr. Westminster, Massachusetts 01473 and Combustion Components Associates, Inc. 884 Main Street Monroe, CT 06468

> Prepared by: CEMServices Inc. 360 Old Colony Road Norton, Massachusetts 02766

All information contained in this report is true and accurate to the best of my knowledge.

Robert Arnold Sr. Project Director

2013 Date

TABLE OF CONTENTS

1. INTRODUCTION	.1
2. SUMMARY OF RESULTS	. 2
 3. FACILITY DESCRIPTION 3.1 General 3.2 Test Location 3.3 Plant Entry and Safety Policies 	.3 .3 .3
 4. REFERENCE METHOD TEST PROCEDURES. 4.1 Velocity Traverse - EPA Test Method 1 4.2 Volumetric Flow Rate - EPA Test Method 2 4.3 Moisture Content - EPA Test Method 4 4.4 Nitrogen Oxides and CEMS Calibration Procedures - EPA Test Method 7E 4.5 Carbon Monoxide - EPA Test Method 10 4.6 Oxygen and Carbon Dioxide - EPA Test Method 3A 4.7 PM and Ammonia - EPA Method 5 / CTM027 	.5.6.6.7.8.9
5. REFERENCE METHOD TEST EQUIPMENT	10 10 10 11
6. QUALITY CONTROL PROCEDURES	12 12

LIST OF TABLES

POLLUTANTS, TEST METHODOLOGIES, AND EMISSION LIMITS	1
TEST RESULTS	2
VELOCITY TRAVERSE POINT LOCATIONS	5
PS 2 CEM TRAVERSE POINT LOCATIONS	7
REFERENCE METHOD ANALYZERS	11

LIST OF FIGURES

APPENDICES

- A. CO Emission Rate Calculation Sheets
- B. NOx Emission Rate Calculation Sheets
- C. NH3 Emission Rate Calculation Sheets
- D. Particulate Emission Calculation and Velocity Traverse Sheets
- E. CEM Data with Calibration Error Checks and System Bias Checks & CEM Point Data
- F. Facility Data
- **G.** Laboratory Analysis
- H. Field Data Sheets
- I. Fuel Analysis
- J. Definition of Abbreviations

1. INTRODUCTION

CEMServices of Norton, Massachusetts was retained by Pinetree Power Fitchburg and Combustion Component Associates (CCA) to conduct a Diagnostic Emission Test Program at the Pinetree Fitchburg Facility located in Westminster, Massachusetts.

Table 1-1 indicates the air constituents / pollutants tested, and the test methodologies used during the emissions test program, and the emission limits for any applicable pollutants.

CONSTITUENTS	TEST METHODS	EMISSION LIMIT
Volumetric Flow	EPA Method 1 & 2	N/A
Oxygen\Carbon Dioxide	EPA Method 3A	N/A
Moisture	EPA Method 4	N/A
Filterable Particulate Matter	EPA Method 5	0.016 #/MMBtu 4.16 #/hr
Nitrogen Oxides	EPA Method 7E	0.175 #/MMBtu 45.5 #/hr
Carbon Monoxide	EPA Method 10	0.20 #/MM/Btu 52.0 #/hr
Ammonia	5/26A	10 ppmv 2.04 #/hr

TABLE 1-1 POLLUTANTS, TEST METHODOLOGIES, AND EMISSION LIMITS

For the testing, a total of three runs were performed for each pollutant parameter. All Reference Method LB/MMBtu emission rates were calculated using a calculated 11022 fuel factor (Fd) from a wood sample taken by CCA while onsite. Sterling Analytical conducted the fuel analysis and Maxxam Analytics of conducted all ammonia analysis.

The test program took place on June 25 and 26, 2013. Robert Arnold was the Project Director for this test Program. Jim Jardin, Chris Parrott and Mike Dadmun also of CEMServices assisted him.

2. SUMMARY OF RESULTS

Run		100% Run 1	100% Run 2 Repeat	50%
PM	LB/MMBtu	0.010	0.012	0.009
Total	LB/HR	3.50	4.17	1.47
NOx	PPM	31.76	33.84	29.37
	LB/MMBtu	0.061	0.065	0.068
	LB/HR	14.45	15.78	9.02
со	PPM	173.78	409.57	86.44
	LB/MMBtu	0.213	0.480	0.122
	LB/HR	48.09	113.83	16.15
NH3	PPM	1.25	1.30	0.26
	LB/MMBtu	0.0009	0.0009	0.0002
	LB/HR	0.21	0.22	0.03

TABLE 2-1TEST RESULTS JUNE 2013

3. FACILITY DESCRIPTION

3.1 General

Pinetree Power Fitchburg L.P., located in Westminster, Massachusetts consists of a wood fired boiler with a maximum design capacity of 260 MMBTU/hour which uses wood chips as its primary fuel. The boiler drives a steam turbine generator with a nominal output of approximately 16 megawatts net electricity.

Wood fuel is introduced into the boiler through three pneumatic wood fuel distributors. The wood is partially burned in suspension on a Harrington grate provided by Riley Stoker. Multiple levels of overfire air are injected into the combustion section to ensure the complete burn.

Exhaust gases exiting the boiler are directed through a 75-inch inside diameter exhaust stack standing 180 feet above grade. The CEM probes and EPA RM test ports are located approximately 130 feet above grade.

Particulate emissions generated from the source are controlled by a dry mechanical dust collector and a positive pressure air filter system (baghouse). NOx is controlled by the use of Selective Non-catalytic Reduction technology with ammonia injection.

3.2 Test Location

The stack that services the wood-fired boiler at Pinetree Fitchburg has an internal diameter of 6.25 feet at the port height (130 feet). There are two sampling ports, 6 inches in diameter and ninety degrees apart. The distance from the nearest downstream disturbance (taper) to the sampling ports is 20 feet. The distance from the ports to the nearest upstream disturbance (stack exit) is 50 feet. Figure 3-1 is a schematic of the sampling location.

Figure not drawn to scale

FIGURE 3-1 TEST LOCATION

3.3 Plant Entry and Safety Policies

Pinetree Fitchburg requires all visitors to check in with the control room before walking about the plant. Most areas of the plant require a hard hat. Safety glasses and steel toe boots are also encouraged.

4. REFERENCE METHOD TEST PROCEDURES

4.1 Velocity Traverse - EPA Test Method 1

Method 1 procedures delineate velocity traverses for stationary sources. As described in Section 2, the stack internal diameter at the port location is 6.25 feet. The ports are 20 feet or 3.2 diameters from the nearest downstream disturbance, and 50 feet or 8 diameters from the nearest upstream disturbance.

Based upon EPA Method 1 criteria, a total of twenty four (24) traverse points (12 per port) were used for particulate, volumetric flowrate determinations and isokenectic sampling traverses. The probe was marked according to the measurements in Table 4-1. For PM 10/2.5 testing, the probe was placed at a total of twelve (12) traverse points, 6 per port, during the constant rate sampling. This probe was marked according to the measurements in Tables 4-2.

Traverse Point	Distance (% Diameter)	Distance from Wall (inches)
1	2.1	1.6
2	6.7	5.0
3	11.8	8.9
4	17.7	13.3
5	25.0	18.8
6	35.6	26.7
7	64.4	48.3
8	75.0	56.3
9	82.3	61.7
10	88.2	66.2
11	93.3	70.0
12	97.9	73.4

TABLE 4-1VELOCITY TRAVERSE POINT LOCATIONS

4.2 Volumetric Flow Rate - EPA Test Method 2

Method 2 was used for the determination of stack gas velocity and volumetric flow rate. Before the velocity traverse was started, a leak check was conducted on the pitots, and the manometer was leveled. The pitots were connected to a manometer using 1/8 inch ID Tygon tubing. These connections were checked for leaks prior to the initiation of testing, and at the conclusion of the day. The velocity head and stack gas temperatures were recorded for each of the required sampling points. Simultaneous gas density (Method 3A) and stack gas moisture content (Method 4) testing was conducted during every test run.

4.3 Moisture Content - EPA Test Method 4

Method 4 is used for the determination of moisture content in stack gas. This method consists of extracting a known volume of gas sample and quantifying the removed moisture portion of this sample. Moisture content was determined from each corresponding test run.

Before each test run the impingers used to remove condensate from the gas were prepared according to each specific method. Impingers were loaded according to each method. The sampling train was then assembled and the sampling probe heated. The train was checked for leaks by plugging the sample inlet and challenging the train with a vacuum of 15 inches of Hg. All leak rates were below 0.02 CFM. The initial meter volume was recorded and the probe was positioned at the first traverse point. Sampling was conducted isokinetically for each run when required. At the completion of each test run the final meter volume was recorded and their final volumes recorded.

4.4 Nitrogen Oxides and CEMS Calibration Procedures - EPA Test Method 7E

Method 7E is used for the determination of Nitrogen Oxides emissions from stationary sources using instrumental analyzer procedures. In addition, all calibration procedures and requirements for the other instrumentation methods used (Method 3A) are specified in this method.

Before any testing was conducted, the calibration span of all test analyzers was set up so that expected source emissions were at least twenty (20) percent of this span and would not exceed this span. Once this span was determined, calibration gases were chosen within this span. Only gases prepared according to EPA Protocol G1/G2 were used. Certificates of analysis for all gases were provided on-site at the time of testing. Analyzer calibration error checks were then conducted by challenging each analyzer with a zero, mid, and high gas.

The actual value of the high gas used was the calibration span of each analyzer. Analyzer responses to these gases were within two (2) percent of the instrument's span or within 0.5 PPM of the gas value. Before and after each test run a sampling system bias check was conducted on each monitor.

This check consisted of introducing the calibration gases at the sampling probe thus allowing the gases to travel through the entire sampling system including any filters. The analyzer responses to this check were then recorded by the data acquisition system. All system bias check responses were within five (5) percent of the instruments span or within 0.5 PPM, when compared to the analyzer calibration error check conducted initially.

The sampling system bias check conducted prior to each test run was compared to the sampling system bias check conducted at the completion of that same run.

Differences between the two bias checks constitute the upscale and zero calibration drifts. All calculated calibration drifts were below three (3) percent of the span of the analyzer or within 0.5 PPM.

Once the initial system bias check was conducted the system was put into the sample mode and data acquisition was initiated. The probe was positioned at the first traverse point. The heated probe was 5/8" stainless steel tube that was traversed at 16.7%, 50.0%, and 83.3% of the stack diameter (6.5 ft). Table 4-2 shows the CEM traverse point locations

Traverse Point	Distance (% Diameter)	Distance from Wall
1	16.7	12.5 "
2	50.0	37.5 "
3	83.3	62.5 "

TABLE 4-2PS 2 CEM TRAVERSE POINT LOCATIONS

A Thermo Environmental Model 42 NOx/NO2/NO analyzer was used to continuously measure the concentration of NOx in the effluent gas. The analytical technique of the analyzer is chemiluminescence. In the determination of NOx, the sample is routed through a molybdenum converter where the NO2 is disassociated to form NO. The sample is then passed through a reaction chamber where the NO is quantitatively converted to NO2 by gas phase oxidation with molecular ozone produced within the analyzer. In this reaction, the NO2 molecules are elevated to an electronically excited state, and then immediately reverted to a non-excited ground state. This reversion is accompanied by the emission of photons, which impinge on a photomultiplier detector and generate a low level DC current. The current is then amplified and used to drive a front panel LED display and data recorder. The NOx concentration measured by the instrument includes the contributions of both the NO in the effluent and the NO resulting from the dissociation of NO2. The efficiency of this converter was checked prior to testing using the procedure specified in Section 8.2.4.1 of this Method.

To ensure that the NH3 in the stack gas was not converted to NO, CEMServices utilized a Model 300 Molybdenum converter. The Molybdenum converter is used to convert NOx to NO at a lower temperature (approx. 350 °C) specific to NOx, thus eliminating the conversion of NH3.

A STRATA data shuttle documented voltage output from each monitor. This instrument sends all signals via a RS-232 cable to a computer for data archiving. Data points were logged every two (2) seconds during each test run. At the test run completion, data was transferred to a spreadsheet for determination of the raw run average. This data is included in the appendices. Results from the initial and final system bias checks were used to adjust the raw run average to correct it for any deviations due to the system bias.

4.5 Carbon Monoxide - EPA Test Method 10

Method 10 is used for the determination of Carbon Monoxide emissions from stationary sources using instrumental analyzer procedures. All calibration procedures and requirements for this instrumentation method are identical to those found in EPA Test Method 7E.

A Thermo Environmental Model 48 Gas Filter Correlation (GFC) analyzer was used to continuously sample the CO concentrations in the gas stream. GFC spectroscopy is based on the comparison of the infrared (IR) absorption spectrum of the measured gas to that of other gases in the sample being analyzed. This technique is implemented by using a high concentration sample of the measured gas (i.e. CO) as a filter for the infrared radiation transmitted through the analyzer. Radiation from an IR source is chopped and passed through a gas filter alternating between CO and N2 due to rotation of the filter wheel. The radiation then passes through an interference filter and on to an absorption cell. The IR radiation exits the sample cell and falls on to an IR detector. The CO gas filter produces a reference beam which cannot be further attenuated by CO in the sample cell. The N2 side of the filter wheel is transparent to the IR radiation and thus produces a measure beam which is partially absorbed by CO in the cell. The chopped detector signal is modulated by the alternation between the two gas filters with is amplified and related to the concentration of CO in the sample cell. Other gases, which absorb the reference and measure beams equally, do not cause modulation of the detector signal leaving the GFC responding specifically to CO. An interference response check was conducted on the CO analyzer prior to testing.

4.6 Oxygen and Carbon Dioxide - EPA Test Method 3A

Method 3A is used for the determination of Oxygen and Carbon Dioxide emissions from stationary sources using instrumental analyzer procedures. All calibration procedures and requirements for this instrumentation method are identical to those found in EPA Test Method 7E.

O2 and CO2 content in the effluent was determined by a California Analytical Instruments monitor. For the O2, the instrument utilizes a micro-fuel cell that consumes O2 from the atmosphere surrounding the measurement probe. The consumption of O2 generates a proportional electrical current. This current is then amplified and provides a signal output of 0-1 V DC which corresponds to a full-scale range of 0-25 % O2.

For the CO2, a non-dispersive infrared detector is used to continuously measure the concentration in the effluent. The theory of operation for this portion of the analyzer is based on the principle that CO2 has a unique absorption line spectrum in the infrared region.

The instrument consists of an infrared light source, a chopper, a measurement cell, and a detector. The infrared light beam emitted by the source passes through the measuring cell, which is filled with a continuously flowing gas sample. The light beam is partially absorbed or attenuated by the gas species of interest in this cell before reaching the front chamber of the detector.

Both the front and rear chambers of the sealed detector are filled with a reference gas. The difference in the amount of light absorbed between the front and rear chambers are dependent of the concentration of the gas species of interest within the sample measurement cell. A pressure differential is thus created between the two chambers. This pressure difference is then observed as gas flow by the micro-flow sensor located in a channel connecting the two chambers.

The resulting AC signal from the micro-flow sensor is rectified, amplified, and linearized into a DC voltage signal for output. An interference response check was conducted on the O2 and CO2 analyzers prior to testing.

4.7 PM and Ammonia - EPA Method 5 / CTM027

Method 5 and CTM 027 was combined for this testing. Method 5 is used for the determination of particulate emissions from stationary sources. The tests consisted of three (3) – fifty five (55) minute test runs. Particulate matter was drawn isokinetically from the source and collected onto a glass fiber filter. CTM 027 was used for the determination of Ammonia in stack gas.

Before each test run the impingers used to remove condensate from the gas were prepared. A total of four impingers were loaded according to the method (modified Greenburg Smith, Greenburg Smith, modified Greenburg Smith, and modified Greenburg Smith). The first two impingers were loaded with 100 ml of 0.1 N sulfuric acid solution. Inserting a desiccated tared filter into the glass filter holder assembled the remainder of the sample train. The filter holder was then placed into the hotbox and the sample probe and nozzle are attached. Prior the start of each run a leak check was performed from the end of the nozzle at a vacuum of 15 inches of mercury.

The run was initiated and isokinetic sampling took place. The entire stack was traversed according to the sample points specified in Method 1. Five (5) minute readings were taken during each of the fifty five minute test run. At the conclusion of the test a post leak check was conducted at the highest vacuum obtained during the run and the sample train was moved to the cleanup site where it was recovered in strict accordance with Method 5 and CT027 Recovery Procedures as follows:

Container #1. The filter was carefully removed from the filter holder and placed in it's identified petri dish container.

Container #2. Taking care to see that dust on the outside of the probe or other exterior surfaces did not get into the sample, particulate matter from the nozzle, probe liner and front half of the filter holder was quantitatively recovered by washing these components with acetone into a glass or nalgene container. The inside of each component was brushed and rinsed until the acetone rinse showed no visible particles, after which a final rinse of the inside surface was performed.

Container #3 (impinger contents for Ammonia): The solution in the impingers was measured using a clean graduated cylinder and the volumes recorded. Each impinger and all connecting glassware was rinsed twice and all contents were transferred to a clean sample bottle.

5. REFERENCE METHOD TEST EQUIPMENT

5.1 Modified Method 5 Sampling Trains

All modified Method 5 testing, described in Section 4 was conducted using several trains manufactured by Nutech. During the test program testing for different constituents was conducted simultaneously. Due to the sampling requirements of the individual test methods, each modified Method 5 train was slightly different to conform to the specific method requirements. Although there were slight differences to the sample filters and impinger contents, all trains consisted of the following basic components:

Meter Boxes - The meter boxes used in this program were the Nutech Model 2010 -Isokinetic Stack Samplers. These boxes consist of a leak-free sample pump, a dry gas meter, a vacuum gauge, and a temperature readout. Thermocouples are mounted on the inlet and outlet of the dry gas meter to provide meter temperatures during testing.

Umbilicals - The umbilicals used in this program consisted of a sample line, pitot lines, and thermocouple lines. These lines transported sample from the impingers to the meter box, indicated pressure difference at the pitots to the meter box, and carried temperature signals from the stack to the temperature readout in the meter box.

Condenser System - This system consisted of glass or Teflon impingers placed in series and in an ice bath. The number of impingers, impinger content, and impinger type varied depending on which test method was being performed.

Probe - The probe assembly consisted of a set of "S" type pitots, a stack thermocouple, and a stainless steel sheath with a heated stainless steel liner.

Particulate Filter - This in-stack filter is a Labyrinth Systems 5 micron sintered stainless steel design.

5.2 Mobile CEM Laboratory

All reference test methods described in Section 4 were conducted using the CEMServices mobile CEM laboratory. This laboratory consists of all analyzers and support equipment used to conduct the CEM sampling during this test program. The following is a description of each item that makes up the entire system:

Sample Probe - A seven foot heated stainless steel probe was used for this test program. The probe has a filter at the end of it to remove particulate matter. The other end contains a heated three-way "flood chamber" allowing either sample or calibration gas to flow to the sample line.

Particulate Filter - This in-stack filter is a Labyrinth Systems 5 micron sintered stainless steel design.

Calibration Valve Assembly - This assembly consists of a Hoke three-way stainless steel valve mounted inside the mobile test lab. The assembly is capable of blocking sample flow and introducing calibration gas into the system. This assembly along with the "flood chamber" ensures that calibrations are performed under the same conditions as sampling.
Heated Sample Line - The heated sample line is two hundred (200) feet long and transports the gas sample from the CEM probe to the moisture removal system and FID in the Mobile Lab. A resistor box that allows you to set the temperature can control the heater in this line. This line was set to 250 degrees F. A heater jumper in the Mobile Lab transported a slip stream sample form the heated line to the FID prior to the moisture removal system.

Moisture Removal System - This system continuously removes moisture from the sample gas while maintaining minimal contact between the condensate and the sample gas. CEMServices uses an electronically cooled condenser consisting of two (2) Teflon heat exchangers which are continuously drained of condensate by two (2) peristaltic pumps. The inlet to the system is connected to the heated sample line and the outlet was connected to the sample pump.

Sample Pump - A dual headed diaphragm pump was used to transport the gas sample through the system to the sample gas manifold. Air Dimension manufactures this pump and all parts coming into contact with the gas stream are either Teflon or stainless steel.

Sample Gas Manifold - This manifold consists of a series of valves and adjustable rotameters capable of setting and maintaining the desired backpressure and flow rate to the analyzers during both sampling and calibration.

Sample Gas Analyzers - CEMServices used the following analyzers to complete this test program:

Gas	Manufacturer	Model	Span
O ₂	California Analytical	100	0-22.8%
CO ₂	California Analytical	100	0-19.85 %
NOx	Thermo Electron	42	0-192.3 PPM
CO	Thermo Electron	48	0-947.0 PPM

TABLE 5-1 REFERENCE METHOD ANALYZERS

Data Recorder - All voltage outputs from the analyzers are sent to a Strawberry Tree Data Shuttle. This shuttle logged data at two-second intervals. Data from the shuttle is sent to a computer where a Strawberry Tree data acquisition program lists instantaneous concentration values for each parameter. At the conclusion of each run, one-minute averages are printed out and a calibration is initiated through the program. The calibration data is used to correct the raw averages for system bias and drift.

5.3 Calibration Gases

All calibration gases used in this test program were prepared according to EPA Protocol G1/G2. As per EPA Test Method 7E for all O2, CO2, CO, NOx, and SO2 testing, the high level calibration gas was the span of the analyzer. All mid calibration gas values were between 40-60 % of the span of the analyzer (or value of the high level gas), and all low (or zero) calibration gas values were between 0-20 % of the span of the analyzer (or value of the high level gas) using pre-purified nitrogen.

6. QUALITY CONTROL PROCEDURES

6.1 General

Throughout all phases of this test program strict attention was given to all testing to provide the highest quality of results possible. All of CEMServices test equipment is of the highest quality available and undergoes routine maintenance to ensure top operating condition. This includes meter boxes, thermocouples, barometers, pitot tubes and sampling nozzles.

Meter boxes are calibrated over a full range of flow rates against certified orifices every six months. After each field use the meter box is given a calibration check against an orifice at the average flow rates and highest vacuums experienced in the field. Thermocouples are calibrated as specified in the EPA Handbook against NBS traceable mercury in glass thermometer. Pitot tubes are visually inspected for conformance to the dimensional specified in EPA Method 2.

Sampling was conducted by trained personnel with extensive experience in CEM sampling. All analyzers are tested for interference of other gas compounds at least once every six months. In addition, a converter efficiency check is performed on the NOx analyzer to ensure the proper conversion of NO2 to NO.

All sampling and analysis was conducted in strict accordance with EPA test procedures (where available). The quality control procedures found in the EPA Quality Assurance Handbook for Air Pollution Measurement Systems was adhered to as well.

Analyzer calibrations were performed at the beginning of each test day. System calibrations were performed before and after each test run through the entire sampling system. All calculations were conducted in strict accordance with the equations found in the individual Methods. Calculations were conducted on a computer and the input data was checked by a person other than the original calculator to ensure that it is correct.

The entire staff of CEMServices is thoroughly familiar with all test methods used in this program and has extensive experience in source emission monitoring.

Appendix A

CO EMISSION RATE CALCULATION

FACILTY: PINETREE FITCHBURG JNIT: WOOD FIRED BOILER DATE: 6-26-13					RUN ID#: START: END:	Run 1 08:25 09:25			
Cgas PPMd	v =	173.78		Cgas	010	C02	=	12.80	
PPMwv		138.85		Cgas	010	02		7.27	
M.W. CO		28.01		FUEL	FA	CTOR (Fd)=	11022	
BWO %		20.1%		Qs DS	SCE	Ή	=	3809386	
Cd = Cgas	X	(M.W. / 3	85.6) /	10000	00			1.262E-05	LBS/SCF
E = Cd X	FUEL	FACTOR X()	20.9/(20	.9-%0	2))	=	0.213	LBS/MMBTU
PMR = CD	X QS	DSCFH						48.09	LBS/HR

CO EMISSION RATE CALCULATION

FACILTY: UNIT: DATE:	PINET WOOD 6-26-	REE FITCHBURG FIRED BOILER 13			RUN ID#: START: END:	Run 2 09:55 10:55
Cgas PPMd	v =	409.57	Cgas % CO2		13.48	
PPMwv	=	322.74	Cgas % O2		6.63	
M.W. CO	-	28.01	FUEL FACTOF	R(Fd) =	11022	
BWO %	=	21.2%	Qs DSCFH	Market	3826163	
Cd = Cgas	Х	(M.W. / 385.6)	/ 1000000	=	2.975E-05	LBS/SCF
E = Cd X	FUEL 1	FACTOR X(20.9/	(20.9-%02))		0.480	LBS/MMBTU
PMR = CD	X QS	DSCFH			113.83	LBS/HR

CO EMISSION RATE CALCULATION

FACILTY: UNIT: DATE:	PINETR WOOD F 6-25-1	EE FITCHBURG 'IRED BOILER 3			RUN ID#: START: END:	Dia 50-1 13:35 14:35
Cgas PPMd	.v =	86.44	Cgas % CO2	=	11.60	
PPMwv	=	71.31	Cgas % O2	=	9.03	
M.W. CO	-	28.01	FUEL FACTOR(Fd)=	11022	
BWO %		17.5%	Qs DSCFH		2572399	
Cd = Cgas	1) X	4.W. / 385.6) /	1000000	=	6.279E-06	LBS/SCF
E = Cd X	FUEL FA	ACTOR X(20.9/(20	.9-%02))		0.122	LBS/MMBTU
PMR = CD	XQSI	DSCFH		-	16.15	LBS/HR

Appendix B

NOx EMISSION RATE CALCULATION

FACILTY: UNIT: DATE:	PINET WOOD 6-26-	REE FITCHBURG FIRED BOILER 13			RUN ID#: START: END:	Run 1 08:25 09:25
Cgas PPMd	v =	31.76	Cgas % CO2		12.80	
PPMwv	=	25.38	Cgas % O2	=	7.27	
M.W. NO		46.01	FUEL FACTOR	(Fd)=	11022	
BWO %		20.1%	Qs DSCFH	-	3809386	
Cd = Cgas	X 1	194 E-7			3.79E-06	LBS/SCF
E = Cd X	FUEL E	FACTOR X(20.9/(2)	0.9-%02))	_	0.064	LBS/MMBTU

PMR = CD X QS DSCFH

= 14.45 LBS/HR

NOX EMISSION RATE CALCULATION

FACILTY: UNIT: DATE:	PINETF WOOD F 6-26-1	REE FITCHBURG FIRED BOILER .3					RUN ID#: START: END:	Run 2 09:55 10:55
Cgas PPMd	.v =	33.84	Cgas	olo	C02		13.48	
PPMwv		26.93	Cgas	olo	02		6.63	
M.W. NO		46.01	FUEL	F.	ACTOR (Fd)=	11022	
BWO %	WARE	20.4%	Qs D	SC	FH		3905087	
Cd = Cgas	X 1	.194 E-7				=	4.04E-06	LBS/SCF
E = Cd X	FUEL F	ACTOR X(20.9/(20.	9-802	2))			0.065	LBS/MMBTU
PMR = CD	XQS	DSCFH				-	15.78	LBS/HR

NOx EMISSION RATE CALCULATION

FACILTY: UNIT: DATE:	PINET WOOD 6-25-3	ree fitchburg fired boiler 13			RUN ID#: START: END:	Dia 50-1 08:15 09:15
Cgas PPMd	.v =	29.37	Cgas % CO2		11.60	
PPMwv		23.38	Cgas % O2	==	9.03	
M.W. NO	<u>webb</u>	46.01	FUEL FACTOR	(Fd) =	11022	
BWO %		20.4%	Qs DSCFH		2572399	
Cd = Cgas	X 1	.194 E-7		-	3.51E-06	LBS/SCF
E = Cd X	FUEL F	ACTOR X(20.9/(20.	9-%02))		0.068	LBS/MMBTU
PMR = CD	X QS	DSCFH			9.02	LBS/HR

Appendix C

AMMONIA EMISSIONS CALCULATION SHEET

FACILITY UNIT DATE	: PINETREE FITCHBURG : WOOD FIRED BOILER : 6-26-13	RUN STAF END:	ID#: RT:	Run 1 08:25 09:35	
SAMPLE A	NALYTE SUMMARY REPORT				VOLUME (ml) 533
IMP 1,2,	3,RINSE - MICROGRAMS PER SAMPLE =		1100	ug	
TOTAL (u	ag) - MICROGRAMS PER SAMPLE =		1100	ug	
MOLECULA	AR WEIGHT OF AMMONIA (NH3) =		17.03	g/g-mole	
BLANK AN	JALYTE SUMMARY REPORT				VOLUME (ml)
TOTAL BI	JANK - MICROGRAMS PER SAMPLE =		25	ug	300
VM STD	= 17.64 * (VM)*Y*DELTA H ABS) / (TM)			43.91	DSCF
Qs	= 3600(1-BWO)(VS)(AS)(17.64)(PS)/(TS)	=		3809386.37	DSCFH
CS	= (2.205 X 10-9) (ug) / (VM STD)	=		5.52E-08	LBS/DSCF
CS'	= 0.0000154 (ug) / (VM STD)			3.86E-04	GRAINS /DSCF
PPMdv	CS * 1000000			1.25	PPM
	(MW) / 385.6			1.100	
PPM @ 7% O2	= PPM * (13.9 / (20.9 - %O2))	-		1.28	PPM @ 7% O2
PMR	: (QS) (CS)	=		0.21	LBS/HR
Em	*PPM * M.W/385.6/1,000,000*Fd*20.9/(2	20.9-02) =	0.0009	LBS/MMBtu

AMMONIA EMISSIONS CALCULATION SHEET

FACILITY UNIT DATE	: PINETREE FITCHBURG : WOOD FIRED BOILER : 6-26-13	RUN ID#: START: END:	Run 2 09:55 10:57	
SAMPLE AN	VALYTE SUMMARY REPORT			VOLUME (ml) 534
IMP 1,2,3	3,RINSE - MICROGRAMS PER SAMPLE =	1200	ug	
TOTAL (uç	g) - MICROGRAMS PER SAMPLE =	1200	ug	
MOLECULA	R WEIGHT OF AMMONIA (NH3) =	17.03	g/g-mole	
BLANK ANA	ALYTE SUMMARY REPORT			VOLUME (ml) 300
TOTAL BLA	ANK - MICROGRAMS PER SAMPLE =	25	ug	
VM STD =	= 17.64 * (VM)*Y*DELTA H ABS) / (TM)	=	46.10	DSCF
Qs =	= 3600(1-BWO)(VS)(AS)(17.64)(PS)/(TS)	=	3826163.42	DSCFH
CS =	= (2.205 X 10-9) (ug) / (VM STD)		5.74E-08	LBS/DSCF
CS' =	= 0.0000154 (ug) / (VM STD)		4.01E-04	GRAINS
DDMdu -	CS * 1000000		1 20	/ DSCF
PPMOV -	(MW) / 385.6		1.50	PPM
PPM = @ 7% O2	= PPM * (13.9 / (20.9 - %O2))		1.27	PPM @ 7% O2
PMR	= (QS) (CS)		0.22	LBS/HR
Em	= PPM * M.W/385.6/1,000,000*Fd*20.9/(20	0.9-02) =	0.0009	LBS/MMBtu

AMMONIA EMISSIONS CALCULATION SHEET

FACILITY: PINETREE FITCHBURG UNIT : WOOD FIRED BOILER DATE : 6-25-13	RUN ID#: START: END:	Dia 50-1 13:35 14:40	
SAMPLE ANALYTE SUMMARY REPORT			VOLUME (m1) 536
<pre>IMP 1,2,3,RINSE - MICROGRAMS PER SAMPLE =</pre>	190	ug	
TOTAL (ug) - MICROGRAMS PER SAMPLE =	190	ug	·
MOLECULAR WEIGHT OF AMMONIA (NH3) =	17.03	g/g-mole	
BLANK ANALYTE SUMMARY REPORT			VOLUME (ml)
TOTAL BLANK - MICROGRAMS PER SAMPLE =	25	ug	500
VM STD = $17.64 \times (VM) \times Y \times DELTA H ABS) / (TM)$	NAME OF THE OWNER	35.89	DSCF
Qs = 3600(1-BWO)(VS)(AS)(17.64)(PS)/(TS)	-	2572398.81	DSCFH
CS = (2.205 X 10-9) (ug) / (VM STD)		1.17E-08	LBS/DSCF
CS' = 0.0000154 (ug) / (VM STD)	<u></u>	8.15E-05	GRAINS /DSCE
CS * 1000000 PPMdv =		0.26	PPM
(MW) / 385.6			
PPM = PPM * (13.9 / (20.9 - %02)) @ 7% O2	-	0.31	PPM 9 7% 02
PMR : (QS) (CS)	=	0.03	LBS/HR
Em PPM * M.W/385.6/1,000,000*Fd*20.9/(2	0.9-02) =	0.0002	LBS/MMBtu

Appendix D

FACILITY:	PINETREE FIT	CHBURG					RUN ID# :	Dia 50-1
UNIT :	WOOD FIRED E	BOILER				S	TART TIME:	13:35
							END TIME:	14:40
DATE :	6-25-13	TRAV	DELTA	SQ	DELTA	DGM	DGM	STACK
		PT	P	ROOT	H	IN	OUT	TEMP
Ds (FT)	6.25	Al	0.37	0.61	1.17	98	98	325
As (SQFT)	30.68	2	0.39	0.62	1.1/	99	99	328
Y =	1.01/1	3	0.43	0.66	1.29	99	99	220
PIT COEFF	0.200	4	0.46	0.68	1 30	99	99	331
DII (IN) Dr (COFT)	0.200	5	0.40	0.00	1 20	99	99	331
AN (SQFI) TMD-1 (TNT)	100	0	0.40	0.03	1 20	99	99	330
IMP-1 (INI)	100	2	0.40	0.63	1 17	99	99	330
IMP-2 (INI) IMP-3 (INT)	100	9	0.32	0.62	1 14	99	99	331
IMP = A (INT)	550	10	0.30	0.63	1.20	99	99	328
TMD-1 (FTN)	189	11	0.34	0.09	1 02	100	100	325
TMP-2 (FIN)	147	12	0.28	0.53	0.84	100	100	325
TMP-3 (FIN)	11	R1	0.35	0.59	1.05	100	100	327
IMP-4 (FIN)	564 2	2	0.36	0.60	1.08	100	100	327
% CO2 (OUT)	11 60	3	0.36	0.60	1.08	100	100	330
% CC2 (CUT) % C2 (CUT)	9 03	4	0.38	0.62	1.14	100	100	331
\$ CO (OUT)	0.01	5	0.40	0.63	1.20	100	100	332
8 CO (OUT) 8 N2 (OUT)	79.36	6	0.39	0.62	1 17	100	100	332
3 NZ (001)	19.00	7	0.36	0.60	1 08	100	100	332
		, 8	0.38	0.60	1 1 4	101	101	331
D BAB	29 8	G	0.30	0.57	0.96	101	101	329
DOUK	-0.46	10	0.32	0.57	0.96	101	101	329
FINAL METER	424 118	11	0.31	0.56	0.93	101	101	328
TNT METER	386 646	12	0.21	0.50	0.81	101	101	323
MID CHECK	0 000		0.27	0.52	1 11	99.8	99.8	329.0
VM (CF)	37 472	TS (IR) =	0.0,	789.0	DELT	A H (ABS)	=	29.88
RUN TIME	60	TM ('F)=		99.8	PS (ABS)		29.77
F-FACTOR	11022	TM ('R)=		559.8	VI (TOT)		161.2
SAMPLE	TT. TT B	BFAKER		SAMPLE		FILTER	BEAKER	
NUMBER	3589	20		NUMBER		3593	30	
WTNAL WT	0 3467	63 2237		FINAL W	Τ.	0.3376	66.8444	
TIME WI.	0.3419	63 2191		TARE WT		0.3377	66.8442	
NET WT	0 0048	0.0046		NET WT.	•	-0.0001	0.0002	
SAMPLE BEAKE	R VOLUME	60	ml	BLANK B	EAKER VO)T.UME	100	ml
TOTAL SAMPLE	GAIN	9.40	ma	ACETONE	RESTDUE	, ,	0.12	ma
TOTAL SAMPLE	GAIN LESS ACE	TONE RESIDU	E (Mn)	110210112	1001001	-	9.28	mg
VM 970 =	17 64 (VI	M) (Y) (DET.	TA H AR	S) / (TM)		Land.	35.89	DSCF
VW STD =	1,101 (1)	.04707 (V	TTOT)			=	7.59	CF
RWO =	7)	/W STD)/(VW	STD) + (N	/M STD)		=	0.175	
Md(DRY) =	.44(%CO2)	+.32(802)+.	28(%CO)·	+.28(%N2)			30.22	LBS/MOLE
Ms (WET) =	• • • • • • • • • • • • • • • • • • • •	Md (1~BWO) +	18(BWO)				28.09	LBS/MOLE
G =	c.	SORT (TS /)	PS / MS)	ł			0.97	
VS =	85	5.49(CP)(G)	(SORT DE	ELTA P)			42.39	FPS
н =	-	0.002669	(VI TO)	, C)			0.43	
J =	(DEL	TA H ABS) (VM) (Y)	/ (TM)		==	2.03	
K =	((H) +	(J)	, (,			2.46	
% ISO =	((TS)(K)(1.667))/ ((TIME) (V	S)(PS)(AN	1))	=	100.1	010
Os =	3600(1-	BWO)(VS)(AS)(17.64)(PS)/(TS	5)	=	2572399	DSCFH
CS =	(2.2	05x10-6) (M	N) / (V)	M STD)			5.701E-07	LBS/SCF
CS' =		.0154 (MN)	/ (VM S	TD)			0.00398	GRAINS/SCH
CS'@7%02 =	CS'	* (20.9-7)	/ (20.9	- 02)			0.00466	GRAINS/SCH
CS'@12%CO2=		CS' * (12 /	% CO2)			=	0.00412	GRAINS/SCH
PMR =		CS X	Qs				1.47	LBS/HR
E =	CS x FUE	L FACTOR X	(20.9/(2	0.9-%02))	=	0.009	LBS/MMBTU

FACILITY: UNIT :	PINETREE FIT WOOD FIRED B	CHBURG OILER				S	RUN ID# : FART TIME: END TIME:	Run 1 08:25 09:35
DATE :	6-26-13	TRAV	DELTA	SQ	DELTA	DGM	DGM	STACK
		PT	P	ROOT	Н	IN	OUT	TEMP
Ds (FT)	6.25	В1	0.90	0.95	1.80	93	93	362
As (SQFT)	30.68	2	0.94	0.97	1.88	94	94	366
Υ =	1.0171	3	1.00	1.00	2.00	94	94	368
PIT COEFF	0.84	4	1.00	1.00	2.00	94	94	368
Dn (IN)	0.250	5	1.00	1.00	2.00	94	94	369
An (SQFT)	0.00034	6	0.95	0.97	1.90	94	94	369
IMP-1 (INT)	100	7	0.84	0.92	1.68	94	94	370
IMP-2 (INT)	100	8	0.95	0.97	1.90	95	95	369
IMP-3 (INT)	0	9	0.93	0.96	1.86	96	96	368
TMP-4 (TNT)	550	10	0.83	0.91	1.66	96	96	367
IMP-1 (FIN)	254	11	0.73	0.85	1.46	96	96	360
IMP-2 (FIN)	159	12	0.70	0.84	1.40	96	96	354
IMD-3 (FIN)	11	A 1	0 78	0.88	1.56	96	96	347
IMP J (FIN)	561 0	2	0.82	0.91	1 64	97	97	358
IMP-4 (PIN)	12 00	2	1 05	1 02	2 10	97	97	365
3 CO2 (OUI)	12.00	3	1.05	1 02	2.10	07 07	97	370
% O2 (OUT)	1.21	4	1.00	1.02	2.10	97	97	370
% CO (OUT)	0.02	5	1.00	1.00	1 00	57	07	371
% N2 (OUT)	/9.91	6	0.90	0.95	1.00	97	97	271
		/	0.92	0.96	1.84	97	97	371
		8	0.96	0.98	1.92	97	97	370
P BAR	29.78	9	0.95	0.97	1.90	96	96	369
PSTK	-0.67	10	0.92	0.96	1.84	96	96	369
FINAL METER	470.048	11	0.88	0.94	1.76	97	97	366
INT METER	424.583	12 _	0.65	0.81	1.30	97	97	361
MID CHECK	0.000	AVG:	0.90	0.95	1.80	95.7	95.7	365.7
VM (CF)	45.465	TS ('R)=		825.7	DEL	TA H (ABS)		29.91
RUN TIME	60	TM ('F)=		95.7	PS	(ABS)		29.73
F-FACTOR	11022	TM ("R)=		555.7	VI	(TOT)		235.0
SAMPLE	FILTER	BEAKER		SAMPLE		FILTER	BEAKER	
NUMBER	3590	21		NUMBER		3593	30	
FINAL WT.	0.3545	49.6213		FINAL W	г.	0.3376	66.8444	
TARE WT.	0.3429	49.6145		TARE WT		0.3377	66.8442	
NET WT.	0.0116	0.0068		NET WT.		-0.0001	0.0002	
SAMPLE BEAKER	VOLUME	60 -	m]	BLANK BI	EAKER V	/OLUME	100	ml
TOTAL SAMPLE	GAIN	18.40	mα	ACETONE	RESID	JE	0.12	mg
TOTAL SAMPLE	GAIN LESS ACE	TONE RESIDU	E (Mn)				18.28	mg
עד מיידי –	17 61 /M	() (V) (DET	ים ג ע קיי	ב) / (ידיאו)		-	43.91	DSCF
VM SID -	T1.04 (VD		Τ <u>Ψ</u> Π Δυς	5) / (111)			11 06	CF
VW SID -	/ 5	.04/0/ (V.				_	0 201	01
BMO =	(V	W SID)/(VW	31U) T (V	M SIU)			30 34	LBS/MOLF
Ma (DRY) =	.44(3002)-	F.32(302) + .	20(600)1 10(DRO)	F.20(6N2)			27.86	
MS (WET) =		Ma(I-BWU)+.	TS (BWO)			_	27.00	TD9/MOTE
G =	5	SQRT (TS / I	PS / MS) (corm re				1.00	EDC
VS =	85	.49(CP)(G)	(SQRT DE	LTAP)			67.98	EPS
Н =		0.002669	(VI TOT	') ((max)		and the second sec	0.63	
J ==	(DEL:	FAHABS) (VM) (Y)	/ (TM)			2.49	
К =		(H) +	(J)			=	3.12	0
% ISO =	((TS)(K)(I	1.667))/ ((TIME) (VS	5)(PS)(AN))		103.8	õ
Qs =	3600(1-1	BWO) (VS) (AS)(17.64))(PS)/(TS)		3809386	DSCFH
CS =	(2.2)	05x10-6) (M	N) / (V1	M STD)			9.18E-07	LBS/SCF
CS' =		.0154 (MN)	/ (VM S	TD)		2000 	0.00641	GRAINS/SCF
CS'@7%02 =	CS'	* (20.9-7)	/ (20.9	- 02)			0.00654	GRAINS/SCF
CS'@12%CO2=	(CS' * (12 /	% CO2)			-	0.00601	GRAINS/SCF
PMR =		CS X	Qs				3.50	LBS/HR
E =	CS x FUE	L FACTOR X ((20.9/(2	0.9-%02))		=	0.010	LBS/MMBTU

FACILITY: UNIT :	PINETREE FITC WOOD FIRED BC	HBURG				S	RUN ID# : TART TIME: END TIME:	Run 2 09:55 10:57
	C 0C 10		משד תימ	20	עה בפט	DCM	DGM	STACK
DATE :	6-26-13	TRAV	DELIA	ROOT	H	TN	OUT	TEMP
	6 25	г 1 Д 1	0.92	0.96	1.84	96	96	373
DS (FI)	30.68	2	0.95	0.97	1.90	97	97	374
AS (SQLI) V	1 0171	3	1.00	1.00	2.00	97	97	376
T - T DIT CORFF	0.84	4	1.05	1.02	2.10	98	98	377
Dr (IN)	0.250	5	1.05	1.02	2.10	98	98	377
An (SOFT)	0.00034	6	0.80	0.89	1.60	98	98	377
TMP-1 (INT)	100	7	0.75	0.87	1.50	97	97	377
IMP-2 (INT)	100	8	1.10	1.05	2.20	97	97	377
TMP-3 (INT)	0	9	1.00	1.00	2.00	97	97	375
TMP-4 (INT)	550	10	0.92	0.96	1.84	98	98	375
IMP-1 (FIN)	264	11	0.95	0.97	1.90	98	98	375
TMP-2 (FIN)	167	12	0.83	0.91	1.66	98	98	371
IMP-3 (FIN)	16	В1	0.93	0.96	1.86	97	97	370
IMP-4 (FIN)	565.8	2	0.94	0.97	1.88	97	97	371
% CO2 (OUT)	13.48	3	0.98	0.99	1.96	98	98	375
8 02 (OUT)	6.63	4	1.05	1.02	2.10	97	97	377
% CO (OUT)	0.04	5	1.00	1.00	2.00	97	97	378
% N2 (OUT)	79.85	6	1.00	1.00	2.00	97	97	378
, ,		7	0.91	0.95	1.82	97	97	378
		8	0.90	0.95	1.80	97	97	378
P BAR	29.78	9	0.94	0.97	1.88	97	97	379
PSTK	-0.65	10	0.93	0.96	1.86	97	97	373
FINAL METER	519.358	11	0.88	0.94	1.76	97	97	374
INT METER	471.500	12	0.81	0.90	1.62	97	97	370
MID CHECK	0.000	AVG:	0.94	0.97	1.88	97.3	97.3	375.2
VM (CF)	47.858	TS ('R)=		835.2	DELT	A H (ABS)		29.92
RUN TIME	60	TM ('F)=		97.3	PS (ABS)		29.73
F-FACTOR	11022	TM ('R)=		557.3	VI (TOT)	and.	262.8
SAMPLE	FILTER	BEAKER		SAMPLE		FILTER	BEAKER	
NUMBER	3591	22		NUMBER		3593	30	
FINAL WT.	0.3571	60.2763		FINAL W	т.	0.3376	66.8444	
TARE WT.	0.3432	60.2673		TARE WT	•	0.3377	66.8442	
NET WT.	0.0139	0.0090		NET WT.		-0.0001	0.0002	-
SAMPLE BEAKER	VOLUME	60	m1	BLANK B	BEAKER VO	DLUME	100	ml
TOTAL SAMPLE	GAIN	22.90	mg	ACETONE	RESIDUE	2	0.12	mg
TOTAL SAMPLE	GAIN LESS ACET	ONE RESIDUE	(Mn)			=	22.78	mg
VM STD =	17.64 (VM) (Y) (DELTA	H ABS) /	(TM)			46.10	DSCF
VW STD =		.04707 (VI	TOT)			Maarin Aayat h	12.37	CF
BWO =		(VW STD)/(VW	STD)+(VN	4 STD)			0.212	
Md (DRY) =	.44(%CO2)+	.32(%02)+.28((%CO)+.28	3(%N2)		=	30.42	LBS/MOLE
Ms (WET) =		Md(1-BWO)+1	8(BWO)				27.79	LBS/MOLE
G =		SQRT (TS / E	PS / MS)				1.01	
VS =		85.49(CP)(G)	(SQRT DEI	LTA P)		=	69.97	FPS
Н =		0.002669	(VI TOT))			0.70	
J =	(DELT	'A H ABS) (VM)	(Y) /	(TM)			2.61	
К =		(H) +	(J)				3.31	<u>_</u>
% ISO =	((TS)(K)(1	.667))/ ((TIN	4E)(VS)(1	PS)(AN))		-	108.5	Š
Qs =	3600(1-E	8WO) (VS) (AS) (1	17.64)(P	S)/(TS)			3826163	DSCFH
CS =	(2.20)5x10-6) (MN)	/ (VM S'	LD)			1.09E-06	LD3/3UL CDATNO/9CH
CS' =	•	0154 (MN) /	(VM STD)	~~`			0.00701	CDAINS/SCE
CS'07%02 =	CS' *	(20.9-7) /	(20.9 - (02)			0.00/41	GRAINS/SCE
CS'012%CO2=	C	2S' * (12 / %	COZ)				J 17	T'BG\AB
PMR =		CS X Qs	0//00 0	0.0011			±.⊥/ ∩ ∩12	LBS / MMRTII
F	CS X FUEL	L FACTOR X(20	. 9/ (20.9	- 102))			0.012	100,1101010

Appendix E

Calibration E: Operator: Plant Name: Location:	rror Test, R(F: S	Run 1 STH obert Arnol itchburg tack inder Numbe	RATA Version .d	1 3.2	
700	STOREC CYT.	Low-range	≥ >Mid−ı	range	High-range
02 C02 C0 NOx S02		now range	5 1110	unge	ingin runge
Date/Time	06-25-20	13	12:36:50		PASSED
Analyte	02	- CO2	CO	NOx	SO2
Units	8	90	ppm	ppm	ppm
Zero Ref Cvl	0.000	0.000	0.00	0.00	0.00
Zero Avg	0.128	0.001	1,57	0.05	-0.33
Zero Error%	0.6%	0.0%	0.2%	0.0%	0.3%
Low Ref Cyl					
Low Avg					
Low Error%					
Mid Ref Cyl	11.450	9.910	476.00	94.40	50.90
Mid Avg	11.437	9.916	473.34	93.49	50.88
Mid Error%	0.1%	0.0%	0.3%	0.5%	0.0%
High Ref Cyl	22.800	19.850	947.00	192.30	122.00
High Avg	22.707	20.015	934.39	191.78	122.87
High Error%	0.4%	0.8%	1.3%	0.3%	0.7%
Calibration E	rror Test	End			

D'r 1 805

NOx SO2

Date/Time	06-25-2013		13:36:25		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	\$	olo	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.128	0.001	1.57	0.05	-0.33
Zero Avg	0.187	0.003	-1.48	0.05	-0.20
Zero Bias%	0.3%	0.0%	0.3%	0.0%	0.1%
Zero Drift%					
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.437	9.916	473.34	191.78	50.88
Span Avg	11.439	9.993	466.07	193.85	52.43
Span Bias%	0.0%	0.4%	0.8%	1.1%	1.3%
Span Drift%					

50 1 .5

System Bias Check End

Final System Operator: Plant Name: Location: Ref. Zer O2 CO2 CO2 CO NOx SO2	Bias Check, Rob Fit Sta erence Cylin o	Run 1 S' ert Arnol chburg ck der Numbe Span	IRATA Versio ld ers	on 3.2	
Date/Time Analyte Units Zero Ref Cyl Zero Cal Zero Avg Zero Bias% Zero Drift% Span Ref Cyl Span Cal Span Avg Span Bias% Span Drift%	$\begin{array}{c} 06-25-2013\\ 02\\ \$\\ 0.000\\ 0.128\\ 0.211\\ 0.4\$\\ 0.1\$\\ 11.450\\ 11.450\\ 11.437\\ 11.399\\ 0.2\$\\ -0.2\$ \end{array}$	CO2 % 0.000 0.012 0.1% 0.0% 9.910 9.916 9.976 0.3% -0.1%	14:48:15 CO ppm 0.00 1.57 -0.30 0.2% 0.1% 476.00 473.34 463.10 1.1% -0.3%	NOx ppm 0.00 0.05 0.04 0.0% 192.30 191.78 188.76 1.6% -2.6%	PASSED SO2 ppm 0.00 -0.33 -1.51 1.0% -1.1% 50.90 50.88 49.33 1.3% -2.5%
Ini Zero Avg Ini Span Avg Run Avg Co Cm Correct Avg System Bias C.	0.187 11.439 9.048 0.199 11.419 9.031 heck End	0.003 9.993 11.687 0.008 9.985 11.601	-1.48 466.07 83.64 -0.89 464.59 86.44	0.05 193.85 29.26 0.04 191.30 29.37	-0.20 52.43 -0.88 -0.85 50.88 -0.02
	194		401.0	0.858	Ķ

P01.0 9.0 16.2

ø

50-1 Comme D.-

Calibration Error Test, Run 2 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack							
Rei	erence cyr	Ther Numbe	ELS Mid a		Uigh-rango		
zer	:0	LOW-Lange	e Mito-i	ange	nigh-range		
02							
02							
00							
NOX CO2							
502							
Date/Time	06-26-20	13	07:24:58		PASSED		
Analyte	02	CO2	CO	NOx	SO2		
Units	Do	90	ppm	ppm	ppm		
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00		
Zero Avq	0.083	0.003	-0.27	0.07	-0.28		
Zero Error%	0.4%	0.0%	0.0%	0.0%	0.2%		
Low Ref Cyl							
Low Avg							
Low Error%							
Mid Ref Cyl	11.450	9.910	476.00	94.40	50.90		
Mid Avg	11.352	9.899	471.25	94.14	50.70		
Mid Error%	0.4%	0.18	0.5%	0.1%	0.2%		
High Ref Cyl	22.800	19.850	947.00	192.30	122.00		
High Avg	22.588	19.804	941.37	191.87	120.58		
High Error%	0.9%	0.2%	0.6%	0.2%	1.2%		
Calibration 3	Error Test	End					

T. Wheeler MassDEP 6/26/13

Initial System Bias Check, Run 2 STRATA Version 3.2 Robert Arnold Operator: Fitchburg Plant Name: Location: Stack Reference Cylinder Numbers Zero Span 02 C02 СО NOx S02 06-26-2013 07:34:34 PASSED Date/Time 02 C02 СО NOx S02 Analyte ppm 0.00 ppm 0.00 8 90 Units ppm0.000 0.00 0.000 Zero Ref Cyl Zero Cal 0.083 0.003 -0.27 0.07 -0.28 Zero Avg 0.076 0.019 2.75 1.13 0.64 0.0% 0.1% 0.3% 0.5% 0.8% Zero Bias% Zero Drift% Span Ref Cyl 50.90 9,910 476.00 192.30 11.450 11.352 11.230 Span Cal 9.899 471.25 191.87 50.70 190.88 50.51 9.903 470.21 Span Avg 0.5% 0.2% Span Bias% 0.5% 0.0% 0.1%

System Bias Check End

Span Drift%

T. Wheeler MassDEP 6/24/13

15 mm "

77 mg . L

" Ket 1 4 1

WS-14

Final System E Operator: Plant Name: Location: Refe Zerc O2 CO2 CO2 CO2 NOX SO2	Bias Check, R Robe Fitc Stac erence Cylind o S	un 2 ST rt Arnol hburg k er Numbe pan	RATA Versic d rs	on 3.2	
Date/Time Analyte Units	06-26-2013 02 ६	CO2 %	08:51:04 CO ppm	NOx ppm	PASSED SO2 ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.114	0.035	-0.24	0.2/	-0.01
Zero Bias%	0.1%	0.2%	0.0%	0.18	0.28
Zero Drift*	0.2%	0.18		-0.48	-0.5%
Span Ref Cyl	11.450	9,910	470.00	192.30	50.90
Span Cal	11.302	3.033	4/1.23	191.07	50.79
Span Riges	U 38	0.2%	0.2%	0.5%	0.1%
Span Drift%	0.3%	0.2%	-0.1%	0.0%	0.2%
Ini Zero Awa	0 076	0.019	2.75	1.13	0.64
Ini Span Avg	11.230	9,903	470.21	190.88	50.51
Run Avg	7.288	12.745	166.31	29.67	0.06
Co	0.095	0.027	1.25	0.70	0.31
Cm	11.262	9.920	469.72	190.88	50.65
Correct Avg	7,375	12.740	167,71	29.30	-0.26
System Bias C	heck End				

T. Wheel Mass DEP 4/24/13 Final System Bias Check, Run 3 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span O2 CO2 CO2

ME. 13

SO2					
Date/Time	06-26-2013		09:19:41		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	90	8	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00.	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.123	0.048	0.17	0.28	0.32
Zero Bias%	0.2%	0.2%	0.0%	0.1%	0.5%
Zero Drift%	0.0%	0.1%	0.0%	0.0%	0.3%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.296	9.941	470.11	191.68	50.21
Span Bias%	0.2%	0.2%	0.1%	0.1%	0.4%
Span Drift%	0.0%	0.0%	0.1%	0.4%	-0.5%
Ini Zero Avg	0.114	0.035	-0.24	0.27	-0.01
Ini Span Avg	11.294	9.937	469.22	190.87	50.79
Run Avg	7.350	12.733	139.11	36.54	1.41
Со	0.119	0.041	-0.03	0.28	0.15
Cm	11.295	9.939	469.67	191.28	50.50
Correct Avg	7.408	12.708	141.01	36.51	1.27

System Bias Check End

NOx

T. Wheeler MassDEP 6/04/13

Final System Bias Check, Run 4 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span 02 C02

Date/Time	06-26-2013		09:50:46		PASSED
Analyte	02	CO2	СО	NOx	S02
Units	8	cio O	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.131	0.060	-2.40	0.06	-0.17
Zero Bias%	0.2%	0.3%	0.2%	0.0%	0.18
Zero Drift%	0.0%	0.1%	-0.3%	-0.1%	-0.4%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.376	10.005	470.11	191.41	50.52
Span Bias%	0.1%	0.5%	0.1%	0.2%	0.1%
Span Drift%	0.3%	0.3%	0.0%	~0.1%	0.3%
Ini Zero Avg	0.123	0.048	0.17	0.28	0.32
Ini Span Avg	11.296	9.941	470.11	191.68	50.21
Run Avg	7.004	13.021	209.37	29.51	-0.56
Co	0.127	0.054	-1.11	0.17	0.07
Cm	11.336	9.973	470.11	191.54	50.36
Correct Avg	7.025	12.955	212.62	29.48	-0.64

Correct Avg 7.025 System Bias Check End

MSOLC

T. Whater MassDEP W/ZW/13

Final System Bias Check, Run 5 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span 02 CO2 CO2 CO2 NOX SO2

Date/Time	06-26-2013		10:20:25		PASSED
Analyte	02	C02	CO	NOx	SO2
Units	95 95	99	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.131	0.053	-0.27	0.05	-0.17
Zero Bias%	0.2%	0.3%	0.0%	0.0%	0.1%
Zero Drift%	0.0%	0.0%	0.2%	0.0%	0.0%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.336	10.020	470.82	193.08	49.97
Span Bias%	0.1%	0.6%	0.0%	0.6%	0.6%
Span Drift%	-0.2%	0.1%	0.1%	0.9%	-0.48
Ini Zero Avg	0.131	0.060	-2.40	0.06	-0.17
Ini Span Avg	11.376	10.005	470.11	191.41	50.52
Run Avg	6.462	13.669	466.23	28.15	-0.29
Co	0.131	0.057	-1.33	0.06	-0.17
Cm	11.356	10.013	470.46	192.24	50.24
Correct Avg	6.458	13.550	471.73	28.11	-0.12
System Bias Ch	neck End				

M5-2 A

T. Wheeler M9550EP 47/24/13

Final System Bias Check, Run 6 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span O2

M5-2 3

ς.

Date/Time	06-26-2013		10:47:45		PASSED
Analyte	02	CO2	CO	NOx	SO2
Units	8	90	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.138	0.054	-0.29	0.06	-0.60
Zero Bias%	0.2%	0.3%	0.0%	0.0%	0.3%
Zero Drift%	0.0%	0.0%	0.0%	0.0%	-0.4%
Span Ref Cyl	11.450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.334	10.033	469.58	192.66	49.62
Span Bias%	0.1%	0.7%	0.2%	0.4%	0.9%
Span Drift%	0.0%	0.1%	-0.1%	-0.2%	-0.3%
Ini Zero Ava	0 131	0 053	-0.27	0 05	-0 17
Ini Span Avg	11.336	10.020	470.82	193.08	49.97
Run Ava	6.617	13.504	336.57	34.48	-0.46
Со	0.135	0.054	-0.28	0.06	-0.38
Cm	11.335	10.027	470.20	192.87	49.79
Correct Avg	6.627	13.365	340.80	34.33	-0.08

System Bias Check End

CO2 CO NOx SO2

T. Wheeler Mass DEP 4/24/13

,

Final System Bias Check, Run 7 STRATA Version 3.2 Operator: Robert Arnold Plant Name: Fitchburg Location: Stack Reference Cylinder Numbers Zero Span O2

CO2 CO NOx

MS-26

have a company

S02					
Date/Time	06-26-2013	3	11:17:19		PASSED
Analyte	02	CO2	СО	NOx	SO2
Units	90	oło	ppm	ppm	ppm
Zero Ref Cyl	0.000	0.000	0.00	0.00	0.00
Zero Cal	0.083	0.003	-0.27	0.07	-0.28
Zero Avg	0.155	0.056	-1.35	0.07	-0.51
Zero Bias%	0.3%	0.3%	0.1%	0.0%	0.28
Zero Drift%	0.1%	0.0%	-0.1%	0.0%	0.1%
Span Ref Cyl	11,450	9.910	476.00	192.30	50.90
Span Cal	11.352	9.899	471.25	191.87	50.70
Span Avg	11.343	10.022	469.21	191.60	49.54
Span Bias%	0.0%	0.6%	0.2%	0.1%	1.0%
Span Drift%	0.0%	-0.1%	0.0%	-0.6%	-0.1%
Ini Zero Avg	0.138	0.054	-0.29	0.06	-0.60
Ini Span Avg	11.334	10.033	469.58	192.66	49.62
Run Avg	6.794	13.356	410.29	39.08	0.07
Co	0.147	0.055	-0.82	0.06	-0.55
Cm	11.338	10.028	469.39	192.13	49.58
Correct Avg	6.801	13.217	416.17	39.07	0.64
System Bias Ch	neck End				

T. Wheels MassDEP 4/24/13

Test Run 1 STRATA V	ersion 3.2				
	02	CO2	CO	NOx	S02
	ę	O ^j C	ppm	ppm	ppm
Begin calculating ru:	n averages				
06-25-2013 13:38:16	9.188	11,507	75.04	33.59	0.39
06-25-2013 13:39:16	9 315	11 391	79 29	31 99	
06-25-2013 13:40:16	9.341	11 374	125 15	28 42	-0.29
00-25-2015 15.40.10	9.341	11 (24	70 15	20.42	-0.20
06-25-2013 13:41:16	9.044	11.634	78.15	31.13	-0.32
06-25-2013 13:42:15	8.934	11.760	/9.39	31,90	-0.49
06-25-2013 13:43:15	8.877	11.816	72.79	33.30	-0.55
06-25-2013 13:44:15	8.937	11.766	60.61	34.03	-0.70
06-25-2013 13:45:15	8.976	11.733	110.70	31.66	-0.54
06-25-2013 13:46:15	9.013	11.697	94.16	31.21	-0.54
06-25-2013 13.47.15	9.033	11 683	80 76	31 35	-0 60
06-25-2013 13:48:15	0 151	11 571	73 00	21 27	-0.61
06 25 2012 12:40:15	0 157	11.571	73.99	31.57	0.01
06-25-2013 13:49:13	9.157	11.500	67.00	31.50	-0.55
06-25-2013 13:50:16	8.938	11.728	67.17	32.17	-0.64
06-25-2013 13:51:16	8,716	11.979	117.93	30.55	-0.64
06-25-2013 13:52:16	8.700	11.977	75.89	32.24	-0.68
06-25-2013 13:53:16	8.795	11.921	78.89	32.65	-0.69
06-25-2013 13:54:16	8.870	11.848	72.53	32.65	-0,70
06-25-2013 13:55:15	9.063	11.681	63.30	32.62	-0.72
06-25-2013 13:56:15	9 110	11 618	97 05	29 78	-0.73
06-25-2012 12:57:15	0 124	11.600	100 22	20.50	-0.75
06-25-2013 13.57.15	9.134	11.000	100.22	20.30	-0.75
06-25-2013 13:58:15	9.138	11.595	84.89	29.43	-0.67
06-25-2013 13:59:15	9.224	11.530	68.20	30.44	-0.73
06-25-2013 14:00:15	9.136	11.585	62.91	31.23	-0.84
06-25-2013 14:01:15	8.917	11.780	61.98	31.57	-0.81
06-25-2013 14:02:15	8.860	11.870	122.10	28.91	-0.85
06-25-2013 14:03:15	9.095	11,654	88.28	29.57	-0.83
06-25-2013 14.04.15	9 252	11 511	75 02	29 84	-0.90
06-25-2013 14:05:16	0 301	11 352	67 19	20.01	-0.77
06 25 2013 14.05.16	0 226	11 500	66 20	29.04	-0.77
06-25-2013 14:06:16	9.220	11.500	00.20	30.06	-0.95
06-25-2013 14:07:16	9.029	11.694	13.58	30.02	-0.85
06-25-2013 14:08:16	9.079	11.668	87.93	29.06	-0.78
06-25-2013 14:09:16	9.065	11.681	71.31	29.88	-0.88
06-25-2013 14:10:16	9.164	11.594	64.11	29.78	-0.95
06-25-2013 14:11:16	9.152	11.604	72.95	28.82	-0.93
06-25-2013 14:12:16	9.205	11.552	67.22	28.84	-0.88
06-25-2013 14:13:16	9,110	11.645	118.87	26 18	-0.91
06-25-2013 14.14.16	9 1/4	11 612	100 70	26.10	-1.00
06.25 2012 14.15.16	0,004	11 750	100.70	20.17	1.00
06-25-2013 14:15:16	0.904	11.750	73.00	29.18	-1.05
06-25-2013 14:16:16	8.861	11.8/5	62.31	30.51	-0.97
06-25-2013 14:17:16	8.934	11.819	67.38	30.21	-0.98
06-25-2013 14:18:16	8.946	11.809	74.64	29.33	-0.95
06-25-2013 14:19:16	9.134	11.647	99.18	27.28	-0.92
06-25-2013 14:20:16	9.285	11.483	76.97	27.33	-1.09
06-25-2013 14:21:16	9.188	11.566	66.05	27.98	-1.10
06-25-2013 14:22:16	8,970	11.752	69.34	28.66	-0.99
06-25-2013 14.23.16	8 811	11 927	64 76	30 16	-1 08
06-25-2013 14:24:16	8 684	12 0/1	125 33	27 13	-1 23
06-25-2013 14:25:16	0.004	12.041	12/ 15	25.0	1.20
06-25-2013 14:25:16	0.740	12.007	134.15	25.69	~1.21
06-25-2013 14:26:16	8.952	11.813	83.55	27.14	~1.20
06-25-2013 14:27:16	9.073	11.688	104.18	25.60	-1.17
06-25-2013 14:28:16	9.147	11.623	109.39	24.54	-1.20
06-25-2013 14:29:16	8.970	11.775	87.42	26.35	-1.28
06-25-2013 14:30:16	9.102	11.663	99.11	25.09	-1.24
06-25-2013 14:31:16	9.054	11.690	76.87	26.31	-1.22
06-25-2013 14:32:16	8,989	11.783	71.14	27.21	~1.29
06-25-2013 14:33:16	8,684	12.037	76 40	28 26	-1 27
06-25-2013 14:34:16	8 728	12.027	76 90	20.20	-1 29
$06_{25}_{25}_{2013}$ 14.04.10 06_{25}_{2013} 14.04.10	0.720	11 010	10.20	20.07	1 22
06 25-2013 14:33:10	0.000	11 405	117 40	20.90	-1.23
06 05 0012 14:36:15	9.340	11.465	11/.48	24.51	-1.41
00-25-2013 14:3/:15	9,480	11.281	13.45	25.33	-1.31
06-25-2013 14:38:15	9.438	11.317	67.61	25.41	-1.40
Run Averages	02	CO2	CO	NOx	SO2
	9 ¹⁰	8	ppm	ppm	ppm
06-25-2013 14:39:02	9.048	11.687	83.64	29.26	-0.88
Operator:	Robert Arn	old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 1 End					

KATIN 1

Test Run 2 STRATA Ve	ersion 3.2				
	02	CO2	CO	NOx	S02
	olo	qo	ppm	ppm	ppm
Begin calculating run	n averages				
06-26-2013 08:26:05	7.030	12.913	199.61	26.16	0.07
06-26-2013 08:27:04	7.015	12.907	193.87	26.24	-0.02
06-26-2013 08:28:04	7.148	12.830	168.39	27.22	-0.13
06-26-2013 08:29:04	7.074	12.879	154.78	28.21	0.09
06-26-2013 08:30:04	7.299	12,737	141.44	27.25	-0.02
06-26-2013 08:31:04	7.153	12.826	148.01	27.35	0.04
06-26-2013 08:32:04	7.162	12.819	221.05	26.41	-0.02
06-26-2013 08:33:04	6.993	12.941	227.32	26.96	-0.04
06-26-2013 08:34:04	7.008	12.914	182.70	28.09	0.09
06-26-2013 08:35:04	7.213	12.810	184.81	28,64	0.03
06-26-2013 08:36:05	7.469	12.633	142.65	29.43	0.12
06-26-2013 08:37:05	7.521	12.625	148.77	29.75	0.17
06-26-2013 08:38:05	7.719	12.420	142.84	29.00	-0.02
06-26-2013 08:39:05	7.347	12.705	120.80	29.98	0.15
06-26-2013 08:40:05	7.411	12.668	123.25	30.61	0.15
06-26-2013 08:41:05	7.420	12,663	126.22	31.75	0.06
06-26-2013 08:42:05	7.111	12.844	155.15	32.76	0.14
06-26-2013 08:43:05	7.216	12.824	261.51	33.08	0.09
06-26-2013 08:44:05	7.475	12.645	177.05	34.45	0.11
06-26-2013 08:45:05	7.487	12.617	144.58	35.14	0.03
06-26-2013 08:46:05	7.769	12.431	127.63	34.66	0.11
Run Averages	02	CO2	CO	NOx	SO2
	qo	Q	ppm	ppm	ppm
06-26-2013 08:46:05	7.288	12.745	166.31	29.67	0.06
Operator:	Robert Arn	.old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 2 End					

T. Wheeld MassoleP 6/24/13

Test Run 3 STRATA Ve	ersion 3.2				
	02	CO2	CO	NOx	SO2
	8	8	ppm	mqq	ppm
Begin calculating rur	n averages			••	
06-26-2013 08:54:01	7.629	12.525	159,74	34.63	4.33
06-26-2013 08:55:01	7.561	12.560	140.82	34.68	3.76
06-26-2013 08:56:01	7.664	12.499	127.00	34.49	3.12
06-26-2013 08:57:01	7.745	12.451	115.11	33.59	2.54
06-26-2013 08:58:01	7.654	12.482	111.78	33.52	2.05
06-26-2013 08:59:01	7.316	12.752	136.49	35.40	1.71
06-26-2013 09:00:01	7.454	12.677	179,73	34.42	1.53
06-26-2013 09:01:02	7.247	12.801	134.00	36.33	1.32
06-26-2013 09:02:02	7.146	12.873	127.23	36.90	1.25
06-26-2013 09:03:02	7.407	12.717	115.74	35.71	1.05
06-26-2013 09:04:02	7.253	12,785	117.84	35.09	0.95
06-26-2013 09:05:02	7.007	12.973	217.29	36.19	0.88
06-26-2013 09:06:02	7.103	12,907	174.14	37.84	0.84
06-26-2013 09:07:02	7.143	12.888	150.17	37.91	0.72
06-26-2013 09:08:02	7.327	12.768	125.93	37.84	0.67
06-26-2013 09:09:02	7.178	12.856	118.29	38.11	0.66
06-26-2013 09:10:02	7.162	12.867	114.07	39.67	0.42
06-26-2013 09:11:02	7.458	12.661	160.39	37.19	0.59
06-26-2013 09:12:02	7.192	12.848	134.35	38.65	0.39
06-26-2013 09:13:02	7.294	12.790	133.15	39.83	0.37
06-26-2013 09:14:02	7.400	12.715	128.04	39.38	0.36
Run Averages	02	CO2	CO	NOx	SO2
-	号	olo	ppm	ppm	ppm
06-26-2013 09:14:02	7.350	12.733	139.11	36.54	1.41
Operator:	Robert Arn	old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 3 End					

.

T. Wheeler Mass DEP Lofza/13

Test Run 4 STRATA Ve	rsion 3.2				
	02	CO2	CO	NOx	S02
	qlo	dio	ppm	ppm	ppm
Begin calculating rur	n averages				
06-26-2013 09:25:02	7.349	12.764	161.16	35.07	-0.32
06-26-2013 09:26:02	7.533	12.633	153.39	33.20	-0.80
06-26-2013 09:27:02	7.582	12.595	147.29	30.85	-1.24
06-26-2013 09:28:02	7.576	12.586	144.07	28.84	-1.53
06-26-2013 09:29:02	7.546	12.606	113.30	28.92	-0.50
06-26-2013 09:30:02	7.195	12.828	130.97	29.67	-0.60
06-26-2013 09:31:02	6.726	13.211	223.07	30.63	-0.65
06-26-2013 09:32:02	6.837	13.097	213.05	30.90	-0.49
06-26-2013 09:33:02	7.148	12.900	219.04	27.77	-0.37
06-26-2013 09:34:02	7.002	12.972	185.79	27,95	-0.45
06-26-2013 09:35:02	6.850	13.081	182.54	28.11	-0.28
06-26-2013 09:36:02	6.766	13.170	180.71	28.38	-0.42
06-26-2013 09:37:03	6.765	13.186	210.48	27.83	-0.47
06-26-2013 09:38:03	6.737	13.265	317.10	28.52	-0.61
06-26-2013 09:39:03	6.742	13.233	308.57	28.86	-0.61
06-26-2013 09:40:03	6.661	13.364	270.26	29.26	-0.65
06-26-2013 09:41:03	6.584	13.447	284.02	30.47	-0.65
06-26-2013 09:42:03	6.609	13.408	298.39	30.36	-0.31
06-26-2013 09:43:03	6.856	13.129	227.12	30.19	-0.25
06-26-2013 09:44:03	7.092	12.937	235.49	26.86	-0.33
06-26-2013 09:45:03	6.920	13.029	191.03	27.08	-0.20
Run Averages	02	C02	CO	NOx	SO2
-	8	90	ppm	ppm	ppm
06-26-2013 09:45:03	7.004	13.021	209.37	29,51	-0.56
Operator:	Robert Arn	old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 4 End					

T. Whieler MassDEP 6/24/13

Test Run 5 STRATA Ve	ersion 3.2					
	02	CO2	CO	NOx	SO2	
	olo	8	ppm	ppm	ppm	
Begin calculating run	n averages					
06-26-2013 09:53:14	6.537	13.511	425.46	27.18	-0.14	
06-26-2013 09:54:14	6.818	13.189	269.23	27.37	-0.10	
06-26-2013 09:55:14	6.909	13.066	263.95	25.58	-0.13	
06-26-2013 09:56:14	6.330	13.787	425.18	27.27	-0.22	
06-26-2013 09:57:14	6.279	13.895	564.01	27.77	-0.29	
06-26-2013 09:58:14	6.379	13.792	534.25	27.82	-0.24	
06-26-2013 09:59:14	6.771	13.281	265.36	27.90	~0.33	
06-26-2013 10:00:14	7.047	12.980	234,82	26.18	-0.35	
06-26-2013 10:01:14	6.585	13.427	360.28	26.03	~0.31	
06-26-2013 10:02:14	6.132	14.094	789.79	27.08	-0.24	
06-26-2013 10:03:14	6.132	14.093	831.56	27.96	-0.29	
06-26-2013 10:04:14	6.199	14.050	576.77	29.20	-0.29	
06-26-2013 10:05:14	6.530	13.621	340.56	29.49	-0.24	
06-26-2013 10:06:14	6.722	13.298	288,70	27,54	-0.35	
06-26-2013 10:07:14	6.388	13.768	343.78	28.84	-0.37	
06-26-2013 10:08:14	6.451	13.702	320.98	29.04	-0.35	
06-26-2013 10:09:14	6.614	13.480	262.59	28.78	-0.34	
06-26-2013 10:10:14	6.549	13.542	249.94	28.75	-0.39	
06-26-2013 10:11:14	6.137	14.083	690.66*	29.22	-0.33	
06-26-2013 10:12:14	6.029	14.263	977.46*	30.26	-0.41	
06-26-2013 10:13:14	6.156	14.126	775.50*	31.98	-0.40	
Run Averages	02	CO2	CO	NOx	SO2	
	Do Do	de de	ppm	ppm	ppm	
06-26-2013 10:13:15	6.462	13.669	466.23*	28.15	-0.29	
Operator:	Robert Arn	old				
Plant Name:	Fitchburg					
Location:	Stack					
Test Run 5 End						

T. Whater MassDéf 4/24/13

CATA >

Test Run 6	STRATA Ve	ersion 3.2	202	00	NOT	802
		02	COZ		NOX	202
		8	-8	ppm	ppm	ppm
Begin calcu	lating run	averages	10 617	466 20	22.27	0.04
06-26-2013	10:22:22	6.439	13.61/	466.78	33.3/	0.04
06-26-2013	10:23:22	6.569	13.550	374.36	33.46	-0.23
06-26-2013	10:24:22	7.017	13.025	191.77	33.11	~0.32
06-26-2013	10:25:23	7.001	13.004	163.31	32.57	-0.38
06-26-2013	10:26:23	6.641	13.383	235.52	32.55	-0.32
06-26-2013	10:27:23	6.562	13.533	302.04	32.63	-0.42
06-26-2013	10:28:23	6.762	13.281	335.13	31.60	-0.45
06-26-2013	10:29:23	6.597	13.517	246.92	33.17	-0.52
06-26-2013	10:30:23	6.618	13.491	260.80	34.03	-0.47
06-26-2013	10:31:23	6.326	13.852	445.83	35.03	-0.47
06-26-2013	10:32:23	6.249	14.015	644.09	35.71	-0.47
06-26-2013	10:33:23	6.719	13.427	419.11	34.40	-0.62
06-26-2013	10:34:23	6.704	13.376	295.18	34.29	-0.53
06-26-2013	10:35:23	6.632	13,472	283.36	34.35	-0.60
06-26-2013	10:36:23	6.320	13.908	498.37	35.34	-0.48
06-26-2013	10:37:23	6.434	13.803	407.29	36.63	-0.53
06-26-2013	10:38:23	6.579	13.600	312.77	37.08	-0.62
06-26-2013	10:39:23	6.865	13.241	349.75	34.76	-0.55
06-26-2013	10:40:23	6.765	13.313	254.20	35.85	-0.57
06-26-2013	10:41:23	6.563	13.599	292.34	36.83	-0.52
06-26-2013	10:42:23	6.592	13,571	289.02	37.38	-0.62
Run Average	es	02	CO2	CO	NOx	S02
-		ŝ	99	ppm	ppm	ppm
06-26-2013	10:42:23	6.617	13.504	336.57	34.48	-0.46
Operator:		Robert Arn	old			
Plant Name	:	Fitchburg				
Location:		Stack				
Test Run 6	End					

T. Wheelor Messper 4/24/13
	1			R-2	2
Test Run 7 STRATA Ve	ersion 3.2				
	02	CO2	СО	NOx	S02
	8	Po	ppm	ppm	ppm
Begin calculating run	n averages				
06-26-2013 10:51:16	6.710	13.372	288.11	38.43	1.98
06-26-2013 10:52:16	6.698	13.372	424.64	38.21	1.72
06-26-2013 10:53:16	6.432	13.766	545.78	39.66	1.29
06-26-2013 10:54:16	6.438	13.767	611.32	40.03	0.89
06-26-2013 10:55:16	6.491	13.721	593.61	39.49	0.56
06-26-2013 10:56:16	6.644	13.510	558.90	38.35	0.47
06-26-2013 10:57:16	6.654	13.488	442.16	39.05	0.19
06-26-2013 10:58:16	6.682	13.466	382.59	40.11	0.10
06-26-2013 10:59:16	6.719	13.425	310.78	40.56	-0.06
06-26-2013 11:00:16	6.776	13.323	420.35	38.87	-0.13
06-26-2013 11:01:16	6.377	13.836	491.60	40.59	-0.26
06-26-2013 11:02:16	6.370	13.901	561.54	42.20	-0.29
06-26-2013 11:03:16	6.592	13.610	464.71	41.57	-0.42
06-26-2013 11:04:16	6,984	13.098	372.35	39.51	-0.49
06-26-2013 11:05:16	7.639	12.672	292.72	39.97	-0.54
06-26-2013 11:06:16	7.747	12.477	316.26	31.99	-0.46
06-26-2013 11:07:16	6.904	13.153	323.36	36.90	-0.56
06-26-2013 11:08:16	7.003	13.054	299.86	37.20	-0.61
06-26-2013 11:09:16	6.800	13.260	287.44	39.52	-0.63
06-26-2013 11:10:16	6.840	13.252	303.18	40.56	~0.54
06-26-2013 11:11:16	7.177	12.957	324.74	37.97	-0.69
Run Averages	02	CO2	CO	NOx	SO2
	010	99	ppm	ppm	ppm
06-26-2013 11:11:16	6.794	13.356	410.29	39.08	0.07
Operator:	Robert Arn	old			
Plant Name:	Fitchburg				
Location:	Stack				
Test Run 7 End					

12005

T. Wheeler Massher 6/200/13

Appendix F

LOG REQUESTED

No me y

Untitled LOG : 25-JUN-13 14:00:00 LCP-47

PERFORMANCE

"PINETREE	POWER-FITCHBU	RG PERFORM	ANCE LOG"	
FEAM FLOW	75.71 КРРН	AMBIENT	OUTSIDE AIR	TEMP
TN STEAM TEMP	949 DEGE			

FI-03019	STEAM FLOW	75.71	KPPH	AMBIENT	OUTSIDE AIR TEM	> 88	DEGF
PI-03016	MAIN STEAM PRESS	1253	PSIG	TI-02004	FD OUT AIR HTR	IN 96	DEGF
05010		0 00		TI-02039	AH AIR OUT TEMP	408	DEGE
F1-05012	ATTEMP SPRAY FLOW	9.90	KLB/H	11-02035 TT 02026	ECON GAS IN	660	DEGE
11-03007	ATTEMP INLET TEMP	901	DEGF	TT-02030	AH GAS IN TEMP	4/1	DEGE
TIC-03010		/ 3 3		11 - 02042 TT 02051	AH GAS OUT TEMP	201	
	BLUWDOWN FLOW	500		11-02031	BH INLET TEMP	286	
11-03A03		1257			BH OUTLET TEMP	100	
PI-03022	DRUM FRESSURE	0 2	PSIG	1T_03020	CENERATOR CROSS	0 1	
	EEEDMAATED DDESS	1288	DSTC	JT_03020	STATION SERVICE	2.1	Mila/
FT-05015	EEEDWATER ELOW	75 72	KIR/H		STATION NET PWR	7 2	Mila/
TT = 05051	REP SUCTION TEMP	271	DEGE	1TC - 03020	GROSS MW PROD	7491.62	MWHRS
TT-05023	EW TEMP FOON IN	363	DEGE	1T-03022	STA SERVICE	126.56	MWHRS
PI-06012	DEAERATOR PRESS	26.3	PSIG	JQI-03024	NET MHR PROD	9045.16	MWHRS
TT-06006	COND DISCH TEMP	129	DEGE	FT-30170	FTRING RATE	29.0	PCNT
TT-09001	COND RCVR TEMP	128	DEGE	DB-00106	CEM NH3	3.7	PPM
TI-09023	COND LEG A	73.7	DEGF	DB-00109	STACK OPACITY	0.7	%
TI-09024	COND LEG B	73.7	DEGF	AI-02030	BOILER EXIT O2	4.4	%02
TI-09021	EXHAUST TEMP	105	DEGF	DB-00108	CEM FLUE GAS 02	6.5	%02
PI-09004	TURBINE EXH PRESS	4.01	"HGA	DB-00107	CEM CO	53	PPM
LI-09030	DEMIN TANK LEVEL	62.5	"LVL	DB-00105	CEM NOX	25	PPM
				SO2	CEM SO2	-0	PPM
PIC-02020	ID FAN INLET	81	%OPEN	UREA FLOW	RATE %	0.0	%
PI-02020	FURNACE PRESSURE	-0.17	"н2о	% CH4	% METHANE	-0.15	% CH4
PIC-02003	FD FAN INLET	38	%OPEN	FLOW CH4	LFG GAS FLOW	-750.0	CFM
PIC-02003	FD DUCT PRESSURE	13.4	"WC	LFG METER	LFG MASS FLOW	965.9	MSCF
FI-02001	FD AIR FLOW	124.52	KLB/H	LFG METER	LFG HEAT FLOW	5870.0	MMBTU
				LFG_SUC	LFG SUCTION	-0.34	"H2O
FI-02001B	UGA FLOW(CALC)	93.24	KLB/H	WT-1000	BLR WOOD FEED	8128.1	TONS
FIC-020010	LUFA FAN INLEI	29	%UPEN	w1-2000	WOOD REIURN	2914.7	IONS
P1-02007	OVERETRE ATR ELOW	20 00		1 ווסס		CTOP	
FI-U2UU7	OVERFIRE AIK FLOW	30.99 ∕ 1			DUUL STAKT STUP	5108	
FI-14003	GAS BURNER FLUW	4.2	KLB/H	SPEED DDU	TRAFER FEED I		
					DDUZ START STUP	310P 0 0	
				JULED DDU.	LIAILN FLLD Z	0.0	

Fitchburg Unit 1

RATA Report For 6/25/2013, Hour 13:00

Time	02 १	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/25/2013 13:35	6.4	27.2	2.5	70.0	0 0	0 061	0 002
06/25/2013 13:36	6.5	26.8	3.9	64.2	0.0	0.060	0.002
06/25/2013 13:37	6.6	27.6	2.4	61.9	0.0	0.063	0.002
06/25/2013 13:38	6.7	27.9	1.4	60.6	0.0	0.064	0.001
06/25/2013 13:39	6.7	27.9	0.0	100.6	0.0	0.064	0.000
06/25/2013 13:40	6.4	27.2	0.0	77.8	0.0	0.061	0.000
06/25/2013 13:41	6.4	24,1	3.3	65.8 70 c	0.0	0.054	0.003
06/25/2013 13:43	6.4	24.3	4.5	70.8 56.3	0.0	0.054	0.004
06/25/2013 13:44	6.5	26.4	3.5	66.8	0.0	0.059	0.003
06/25/2013 13:45	6.5	28.0	0.0	103.0	0.0	0.063	0.000
06/25/2013 13:46	6.5	27.4	0.1	71.2	0.0	0.062	0.000
06/25/2013 13:47	6.6	25.5	2.2	67.8	0.0	0.058	0.002
06/25/2013 13:48	6.6	25.7	1.9	60.9	0.0	0.058	0.002
06/25/2013 13:49	6.3	25.8	2.8	53.4	. 0.0	0.057	0.002
06/25/2013 13:50	6,2 6 0	25.8	1.4	89.7	0.0	0.056	0.001
06/25/2013 13:52	6.3	26.6	1.1	70.4 64 8	0.0	0,058	0.001
06/25/2013 13:53	6.3	26.3	2.9	66.7	0.0	0.058	0.001
06/25/2013 13:54	6.5	27.0	2.0	59.4	0.0	0.061	0.002
06/25/2013 13:55	6.5	27.3	1.5	57.2	0.0	0.061	0.001
06/25/2013 13:56	6.5	27.6	0.0	101.6	0.0	0.062	0.000
06/25/2013 13:57	6.6	26.9	0.1	82.8	0.0	0.061	0.000
06/25/2013 13:58	6.6	24.7	1.9	62.5	0.0	0.056	0.002
06/25/2013 13:59	6.5	24.2	3.9	55.9	0.0	0.054	0.003
06/25/2013 14:00	6.4 <i>C</i> 1	25.0	3.7	50.9	0.0	0.056	0.003
06/25/2013 14:01 4	65	25.5	2.2	41 5	* 0.3 0.7	0.058	0.002
06/25/2013 14:03	6.7	8.2	15.1	64.0	0.6	0.000	0.000
06/25/2013 14:04	6.8	4.5	29.5	59.6	0.3	0.010	0.025
06/25/2013 14:05	6.6	20.3	9.8	59.1	0.1	0.046	0.008
06/25/2013 14:06	6.5	24.4	1.2	41.0	0.0	0.055	0.001
06/25/2013 14:07	6.5	24.2	0.4	75.7	0,0	0.054	0.000
06/25/2013 14:08	6.5	21.3	4.6	64.2	0.0	0.048	0.004
06/25/2013 14:09	6.6	23.2	3.5	54.0	0.0	0.053	0.003
06/25/2013 14:10	0.0 6.6	23.0	3.0 1 1	59.5	0.0	0.054	0.003
06/25/2013 14:12	6.6	24.3	0.6	75.3	0.0	0.055	0.001
06/25/2013 14:13	6.5	24.5	0.0	99.5	0.0	0.055	0.000
06/25/2013 14:14	6.4	23.1	1.0	69.2	0.0	0.051	0.001
06/25/2013 14:15	6.4	21.6	5.6	53.1	0.0	0.048	0.005
06/25/2013 14:16	6.4	22.4	5.4	55.9	0.0	0.050	0.004
06/25/2013 14:17	6.4	24.4	2.8	53.7	0.0	0.054	0.002
06/25/2013 14:18	6.6	∠⊃.∠ 25.3	0.6	84.4 71 4	0.0	0.057	0.001
06/25/2013 14:20	6.5	23.3	1.2	,⊥,∉ 60 2	0.0	0.058	0.000
06/25/2013 14:21	6.4	23,0	2.8	54.8	0.0	0.051	0,002
06/25/2013 14:22	6,2	23.1	2.7	58.5	0.0	0.050	0.002
06/25/2013 14:23	6.2	23.7	3.3	69.8	0.0	0.052	0.003
06/25/2013 14:24	6.2	24.8	0.0	128.6	0.0	0.054	0.000
06/25/2013 14:25	6.4	24.6	0.2	81.7	0.0	0.055	0.000
06/25/2013 14:26	6,5	21.2	2.6	81.0	0.0	0.048	0.002
06/25/2013 14:27 06/25/2013 14.28	6.5	22.0	0.8	92.8	0.0	0.051	0.000
06/25/2013 14:29	6.5	21.2	2.0	87.8	0.0	0.030	0.000
06/25/2013 14:30	6,5	21.3	2.6	72.4	0.0	0.048	0.002
06/25/2013 14:31	6.4	22.1	1.3	61.1	0.0	0.049	0.001
06/25/2013 14:32	6.2	21.7	3.1	60.4	0.0	0.047	0.002
06/25/2013 14:33	6.2	22,6	3.3	68.3	0.0	0.049	0.003
06/25/2013 14:34	6.4	23.3	2.5	78.6	0.0	0.052	0.002
06/25/2013 14:35	6.8	24.1	0.0	119.8	0.0	0.056	0.000
06/25/2013 14:30	6.8 67	23.8 01 C	U.U 1 7	77.6	0.0	0.055	0.000
06/25/2013 14:38	6.5	21.0	±.3 2.2	⊃/./ 59 0	0.0	0.050	0.001
RATA Run # 1	0.0	21.0	2.2	52.0	0.0	0.01/	0.002

Verified By:

CEMDAS(TM) Data Acquisition System

Fitchburg Unit 1

RATA Report For 6/25/2013, Hour 13:00

Time	02 糁	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/25/2013 14:39	6.4	21.3	3.2	47.3	0.0	0.047	0.003
Average Value	6.5	23.9	2.7	68.8	0.0	0.054	0.002

¥

RATA Run # 1

ŧ

Verified By:

CEMDAS(TM) Data Acquisition System

Page 2 of 4

Unit 1

Ŷ

RATA Report For 6/25/2013, Hour 13:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr

06/25/2013 13:35	0.095	0.000	10.2	0.3	16.0	0.0
06/25/2013 13:38	0.086	0.000	10.2	0.5	14.8	0.0
06/25/2013 13:38	0.000	0.000	10.5	0.3	14.4	0.0
06/25/2013 13:39	0.005	0.000	10.7	0.2	23.3	0.0
06/25/2013 13:40	0.105	0.000	10.3	0.0	17 9	0.0
06/25/2013 13:41	0.089	0.000	9.1	0.5	15.1	0.0
06/25/2013 13:42	0.096	0.000	9.1	0.6	16.1	0.0
06/25/2013 13:43	0.076	0.000	9.5	0.6	13.0	0.1
06/25/2013 13:44	0.091	0.000	9.9	0.5	15.3	0.0
06/25/2013 13:45	0.141	0.000	10.8	0.0	24.1	0.0
06/25/2013 13:46	0.097	0.000	10.4	0,0	16.5	0.0
06/25/2013 13:47	0.094	0.000	9.8	0.3	15.8	0.0
06/25/2013 13:48	0.084	0.000	9.8	0.3	14.1	0.0
06/25/2013 13:49	0.072	0.000	9.9	0.4	12.5	0.0
06/25/2013 13:50	0.119	0.000	9.7	0.2	20.6	0.0
06/25/2013 13:51	0.102	0.000	10.0	0.2	17.5	0.0
06/25/2013 13:52	0.087	0.000	10.1	0.2	15.1	0.0
06/25/2013 13:53	0.089	0.000	9,9	0.4	15.3	0.0
06/25/2013 13:54	0.081	0.000	10.6	0.3	14.1	0.0
06/25/2013 13:55	0.078	0.000	10.7	0.2	13.6	0.0
06/25/2013 13.50 06/25/2013 13.57	0.135	0.000	10.7	0.0	24.0	0.0
06/25/2013 13:58	0.086	0.000	97	0.0	20.0	0.0
06/25/2013 13:59	0.076	0.000	9.4	0.6	13.2	0.0
06/25/2013 14:00	0.069	0.000	9.7	0.5	12.0	0.0
06/25/2013 14:01	0.019	0.001	9.7	0.3	3.2	0.2
06/25/2013 14:02	0.057	0.002	10.4	0.0	9,9	0.4
06/25/2013 14:03	0.089	0.002	3.2	2.2	15.0	0.3
06/25/2013 14:04	0.084	0.001	1.7	4.2	13.9	0.2
06/25/2013 14:05	0.082	0.000	7.8	1.4	13.9	0.1
06/25/2013 14:06	0.056	0.000	9.5	0.2	9.7	0.0
06/25/2013 14:07	0.104	0.000	9.0	0.1	17.1	0.0
06/25/2013 14:08	0.088	0.000	8.1	0.6	14.9	0.0
06/25/2013 14:09	0.075	0.000	8.5	0.5	12.1	0.0
06/25/2013 14:10	0.082	0.000	9.0	0.4	13.6	0.0
06/25/2013 14:11	0.080	0.000	9.3	0.2	13.3	0.0
06/25/2013 14:12	0.104	0.000	9.1	0.1	17.1	0.0
06/25/2013 14:13	0.136	0.000	9.0	0.0	44.4	0.0
06/25/2013 14:14 06/25/2013 14:15	0.034	0.000	0.0 0 1	0.1	10.1	0.0
06/25/2013 14.15 06/25/2013 14.16	0.072	0.000	9.2	0.8	12.5	0.0
06/25/2013 14:17	0.073	0.000	9.4	0.0	12 6	0.0
06/25/2013 14:18	0.117	0,000	9.7	0.1	19.7	0.0
06/25/2013 14:19	0.100	0.000	9.8	0.0	16.8	0.0
06/25/2013 14:20	0.082	0.000	9.0	0.2	14.1	0.0
06/25/2013 14:21	0.074	0.000	8.9	0.4	12.9	0.0
06/25/2013 14:22	0.078	0.000	9.0	0.4	13.9	0.0
06/25/2013 14:23	0.093	0.000	9.1	0.5	16.3	0.0
06/25/2013 14:24	0.171	0.000	9.6	0.0	30.2	0.0
06/25/2013 14:25	0.111	0.000	9.4	0.0	19.1	0.0
06/25/2013 14:26	0.111	0.000	7.8	0.4	18.2	0.0
06/25/2013 14:27	0.127	0.000	8.5	0.1	21.1	0.0
06/25/2013 14:28	0.109	0.000	8.5	0.0	18.5	0.0
06/25/2013 14:29	0.120	0.000	7.9	0.3	20.0	0.0
06/25/2013 14:30	0.099	0.000	8.0	0.4	16.6	0.0
UG/25/2013 14:31 DE/25/2013 14:32	0.083	0.000	8.4	0.2	14.1	0.0
UO/23/2UI3 14:32 NG/25/2013 14:32	0.080	0.000	8.4	0.4	14.2	0.0
06/25/2013 34.34	0.091	0.000	8.7	0.5	16.1	0.0
06/25/2013 14.35	0.100	0.000	0,7 0,7	0.4	10,3 77 7	0.0
06/25/2013 14:36	0.109	0.000	9 0	0.0	47.7	0.0
06/25/2013 14:37	0.081	0.000	8.2	0.2	13.3	0.0
						· · · •

Verified By:

RATA Run # 1

CEMDAS(TM) Data Acquisition System

RATA Report For 6/25/2013, Hour 13:00

Time	CO	SO2	NOX	NH3	CO	SO2
	lb/MBtu	lb/MBtu	lb/hr	lb/hr	lb/hr	lb/hr
06/25/2013 14:38	0.081	0.000	8.2	0.3	13.9	0.0
06/25/2013 14:39	0.064	0.000	8.3	0.5	11.2	
Average Value	0.094	0.000	9.1	0.4	16.0	0.0

RATA Run # 1

Verified By:

_____ CEMDAS(TM) Data Acquisition System

1 (Em loracing pite 2/ fuel sangles 3/ 58 times

×.

stat ms. 1

PERFORMANCE

LCP-47

		"PINETREE	POWER-F	TTCHBUR	G PERFORMAN	ICE LOG"		
	FI-03019	STEAM FLOW	136.52	КРРН	AMBIENT	OUTSIDE AIR TEMP	[,] 77	DEGF
	TI-03013	MAIN STEAM TEMP	948	DEGF				
	PI-03016	MAIN STEAM PRESS	1244	PSIG	TI-02004	FD OUT AIR HTR I	N 87	DEGF
					TI-02039	AH AIR OUT TEMP	442	DEGF
	FI-05012	ATTEMP SPRAY FLOW	15.48	KLB/H	TI-02035	ECON GAS IN	723	DEGF
	TI-03007	ATTEMP INLET TEMP	953	DEGF	TI-02036	AH GAS IN TEMP	545	DEGF
	TIC-03010	ATTEMP OUT TEMP	725	DEGF	TI-02042	AH GAS OUT TEMP	305	DEGF
	FI-10012	BLOWDOWN FLOW	0.4	KLB/H	TI-02B51	BH INLET TEMP	434	DEGF
	TI-03A05	DRUM TEMP	583	DEGF	TI-02C51	BH OUTLET TEMP	422	DEGF
	PI-05022	DRUM PRESSURE	1287	PSIG	PDI-02A51	BH DIFF PRESS	5.2	"н2о
	LI-05018	DRUM LEVEL	0.2	"NWL	JI-03020	GENERATOR GROSS	16.4	MW
	PI-05013	FEEDWATER PRESS	1341	PSIG	JI-03022	STATION SERVICE	2.5	MW
	FI-05011	FEEDWATER FLOW	129.23	KLB/H	CALC	STATION NET PWR	13.9	MW
	TI-05051	BFP SUCTION TEMP	304	DEGF	JIC-03020	GROSS MW PROD 7	704.04	MWHRS
	TI-05023	FW TEMP ECON IN	405	DEGF	JI-03022	STA.SERVICE	13.35	MWHRS
	PI-06012	DEAERATOR PRESS	55.9	PSIG	JQI-03024	NET MHR PROD	080.69	MWHRS
	TI-06006	COND DISCH TEMP	135	DEGF	FI-30170	FIRING RATE	49.0	PCNT
	TI-09001	COND RCVR TEMP	138	DEGF	DB-00106	CEM NH3	3.8	PPM
	TI-09023	COND LEG A	73.7	DEGF	DB-00109	STACK OPACITY	1.2	%
·· · ·	TI-09024	COND LEG B	73.7	DEGF	ai-02030	BOILER EXIT O2	2.8	%02
	TI-09021	EXHAUST TEMP	105	DEGF	DB-00108	CEM FLUE GAS 02	5.5	%02
	PI-09004	TURBINE EXH PRESS	4.20	"HGA	DB-00107	CEM CO	183	PPM
	LI-09030	DEMIN TANK LEVEL	89.0	"LVL	DB-00105	CEM NOX	21	PPM
			~ .	0/	S02	CEM SO2	0	PPM
	PIC-02020	ID FAN INLET	94	%OPEN	UREA FLOW	RATE %	0.0	%
	PI-02020	FURNACE PRESSURE	-0.19	"H2O	% CH4	% METHANE	-0.15	% CH4
	PIC-02003	FD FAN INLET	54	%OPEN	FLOW CH4	LFG GAS FLOW	-/50.9	CFM
	PIC-02003	FD DUCT PRESSURE	13.2	WC (LFG METER	LFG MASS FLOW	965.9	MSCF
	FI-02001	FD AIR FLOW	210.69	KLB/H	LFG METER	LFG HEAT FLOW	6007.3	MMBTU
	02001-		150 00		LFG_SUC	LFG SUCTION	-0.34	"H20
	FI-02001B	UGA FLOW(CALC)	152.60	KLB/H	WT-1000	BLR WOOD FEED	8630.2	TONS
	FIC-020010	COFA FAN INLEI	4/	%OPEN	WT-2000	WOOD REIURN	3005.2	IONS
	P1-02007	OFA DISCHG PRESS	-12	WC				
	F1-02007	OVERFIRE AIR FLOW	1 57.96	KLB/H	DDU1	DDUL START STOP	STOP	
	FI-14003	GAS BURNER FLOW	5.0	KLB/H	SPEED DDU.	LPAPER FEED I	0.0	
						DUUZ START STOP	STOP	
				· .	SPEED DDU.	ZPAPEK FEED Z	0.0	
10	36 ± 26^{-1}	1UN-13 09:35:31		P-47	1.00	G REQUESTED		
5 V				,	LO			

PERFORMANCE

	"PINETREE	POWER-F	TCHBUR	G PERFORMAN	VCE LOG"		
FI-03019	STEAM FLOW	140.18	КРРН	AMBIENT	OUTSIDE AIR TEMP	> 80	DEGF
TI-03013	MAIN STEAM TEMP	959	DEGF				
PI-03016	MAIN STEAM PRESS	1255	PSIG	TI-02004	FD OUT AIR HTR J	in 90	DEGF
				ті-02039	AH AIR OUT TEMP	439	DEGF
FI-05012	ATTEMP SPRAY FLOW	15.48	KLB/H	ті-02035	ECON GAS IN	725	DEGF
ті-03007	ATTEMP INLET TEMP	935	DEGF	TI-02036	AH GAS IN TEMP	548	DEGF
TIG-03010	ATTEMP OUT TEMP	739	DEGF	TI-02042	AH GAS OUT TEMP	303	DEGF
FI-10012	BLOWDOWN FLOW	0.3	KLB/H	TI-02B51	BH INLET TEMP	435	DEGF
TI-03A05	DRUM TEMP	584	DEGF	TI-02C51	BH OUTLET TEMP	424	DEGF
PI-05022	DRUM PRESSURE	1303	PSIG	PDI-02A51	BH DIFF PRESS	5.1	"H2O
LI-05018	DRUM LEVEL	-0.9	"NWL	JI-03020	GENERATOR GROSS	16.7	MW
PI-05013	FEEDWATER PRESS	1366	PSIG	JI-03022	STATION SERVICE	2.6	MW
FI-05011	FEEDWATER FLOW	150.17	KLB/H	CALC	STATION NET PWR	14.2	MW
TI-05051	BFP SUCTION TEMP	306	DEGF	JIC-03020	GROSS MW PROD	7722.36	MWHRS
ті-05023	FW TEMP ECON IN	407	DEGF	JI-03022	STA.SERVICE	16.31	MWHRS
PI-06012	DEAERATOR PRESS	57.9	PSIG	JQI-03024	NET MHR PROD	9082.95	MWHRS
	COND DICCU TEMD	140	DECE	ET 20170	ETRING DATE	E2 0	DCNT
TT 00001	COND DISCH TEMP	140		FI-301/0	FIKING KALE	22.0	PCNI
LT-0300T	COND KEVK TEMP	142	DEGE	DR-00100	CEM NHO	2.0	PPIM

				Unt	itled			
	TI-09023 TI-09024 TI-09021 PI-09004 LI-09030	COND LEG A COND LEG B EXHAUST TEMP TURBINE EXH PRESS DEMIN TANK LEVEL	73.7 73.7 105 4.69 82.9	DEGF DEGF "HGA "LVL	DB-00109 AI-02030 DB-00108 DB-00107 DB-00105 S02	STACK OPACITY BOILER EXIT O2 CEM FLUE GAS O2 CEM CO CEM NOX CEM SO2	1.2 3.3 5.3 151 22 -0	% %02 %02 PPM PPM PPM
	PIC-02020 PI-02020 PIC-02003 PIC-02003 FI-02001	ID FAN INLET FURNACE PRESSURE FD FAN INLET FD DUCT PRESSURE FD AIR FLOW	96 -0.16 56 13.4 220.82	%OPEN "H2O %OPEN "WC KLB/H	UREA FLOW % CH4 FLOW CH4 LFG METER LFG METER	RATE % % METHANE LFG GAS FLOW LFG MASS FLOW LFG HEAT FLOW	$\begin{array}{r} 0.0 \\ -0.15 \\ -750.9 \\ 965.9 \\ 6016.1 \\ -0.34 \end{array}$	% % CH4 CFM MSCF MMBTU "H20
	FI-020018 FIC-020010 PI-02007	UGA FLOW(CALC) COFA FAN INLET OFA DISCHG PRESS	156.97 53 -12	KLB/H %OPEN "WC	WT-1000 WT-2000	BLR WOOD FEED WOOD RETURN	8669.9 3012.4	TONS
	FI-02007 FI-14003	OVERFIRE AIR FLOW GAS BURNER FLOW	√ 63.82 6.4	KLB/H KLB/H	DDU1 SPEED DDU2 DDU2	DDU1 START STOP 1PAPER FEED 1 DDU2 START STOP	STOP 0.0 STOP	
	٤ -	1. 2m bu			SPEED DDU	ZPAPER FEED Z	0.0	
L	og : 26-3	JUN-13 09:55:03	LCI	P-47	LO	G REQUESTED		
	ster	× ~ ~ ~ ~ ~ !	PERFORM	ANCE				
	FI-03019	"PINETREE STEAM FLOW	POWER-1 140.53	FITCHBUR(KPPH	G PERFORMAN AMBIENT	NCE LOG" OUTSIDE AIR TEMI	P 81	DEGF
	TI-03013 PI-03016	MAIN STEAM TEMP MAIN STEAM PRESS	950 1257	DEGF PSIG	TI-02004	FD OUT AIR HTR :	IN 91	DEGF
	FI-05012 TI-03007 TIC-03010 FI-10012 TI-03A05 PI-05022 LI-05018 PI-05013 FI-05011 TI-05051 TI-05023 PI-06012	ATTEMP SPRAY FLOU ATTEMP INLET TEM ATTEMP OUT TEMP BLOWDOWN FLOW DRUM TEMP DRUM PRESSURE DRUM LEVEL FEEDWATER PRESS FEEDWATER FLOW BFP SUCTION TEMP FW TEMP ECON IN DEAERATOR PRESS	W 15.47 P 941 724 0.4 584 1304 0.4 1359 132.16 306 408 57.2	KLB/H DEGF DEGF KLB/H DEGF PSIG KLB/H DEGF DEGF PSIG	TI-02039 TI-02035 TI-02036 TI-02042 TI-02851 TI-02c51 PDI-02A51 JI-03020 JI-03022 CALC JIC-03020 JI-03022 JQI-03024	AH AIR OUT TEMP ECON GAS IN AH GAS IN TEMP AH GAS OUT TEMP BH INLET TEMP BH OUTLET TEMP BH DIFF PRESS GENERATOR GROSS STATION SERVICE STATION NET PWR GROSS MW PROD STA.SERVICE NET MHR PROD	443 728 551 307 438 426 4.7 16.7 2.5 14.2 7727.86 17.15 9083.70	DEGF DEGF DEGF DEGF DEGF "H2O MW MW MW MW MW MW HRS MWHRS
	TI-06006 TI-09001 TI-09023 TI-09024 TI-09021 PI-09004 LI-09030	COND DISCH TEMP COND RCVR TEMP COND LEG A COND LEG B EXHAUST TEMP TURBINE EXH PRESS DEMIN TANK LEVEL	143 144 73.7 73.7 105 s 4.82 82.4	DEGF DEGF DEGF DEGF "HGA "LVL	FI-30170 DB-00106 DB-00109 AI-02030 DB-00108 DB-00107 DB-00105	FIRING RATE CEM NH3 STACK OPACITY BOILER EXIT O2 CEM FLUE GAS O2 CEM CO CEM NOX	52.0 2.6 1.2 2.9 4.9 224 21	PCNT PPM % %O2 %O2 PPM PPM
	PIC-02020 PI-02020 PIC-02003 PIC-02003 FI-02001	ID FAN INLET FURNACE PRESSURE FD FAN INLET FD DUCT PRESSURE FD AIR FLOW	96 -0.16 56 13.2 221.47	%OPEN "H2O %OPEN "WC KLB/H	UREA FLOW % CH4 FLOW CH4 LFG METER LFG METER LFG SUC	RATE % % METHANE LFG GAS FLOW LFG MASS FLOW LFG HEAT FLOW LFG SUCTION	0.0 -0.15 -751.9 965.9 6018.5 -0.34	% CH4 CFM MSCF MMBTU "H20
	FI-02001B FIC-020010 PI-02007 FI-02007 FI-14003	UGA FLOW(CALC) COFA FAN INLET OFA DISCHG PRESS OVERFIRE AIR FLO GAS BURNER FLOW	158.04 54 -12 W 63.65 5.0	KLB/H %OPEN "WC KLB/H KLB/H	WT-1000 WT-2000 DDU1 SPEED DDU DDU2 SPEED DDU	BLR WOOD FEED WOOD RETURN DDU1 START STOP 1PAPER FEED 1 DDU2 START STOP 2PAPER FEED 2	8680.0 3012.8 STOP 0.0 STOP 0.0	TONS TONS

LOG : 26-JUN-13 10:57:22 LCP-47

.

LOG REQUESTED

PERFORMANCE

Untitled

	"PINETREE	POWER-F	ITCHBURG	PERFORMAN	ICE LOG"		
FI-03019	STEAM FLOW	141.46	КРРН	AMBIENT	OUTSIDE AIR TEMP	80	DEGF
TI-03013	MAIN STEAM TEMP	951	DEGF				
PI-03016	MAIN STEAM PRESS	1255	PSIG	TI-02004	FD OUT AIR HTR I	N 91	DEGF
				TI-02039	AH AIR OUT TEMP	448	DEGF
FI-05012	ATTEMP SPRAY FLOW	15.47	KLB/H	TI-02035	ECON GAS IN	730	DEGF
TI-03007	ATTEMP INLET TEMP	944	DEGF	TI-02036	AH GAS IN TEMP	555	DEGF
TIC-03010	ATTEMP OUT TEMP	728	DEGE	TI-02042	AH GAS OUT TEMP	309	DEGF
FI-10012	BLOWDOWN FLOW	0.3	KLB/H	TI-02B51	BH INLET TEMP	436	DEGF
TI-03A05	DRUM TEMP	583	DEGF	TI-02C51	BH OUTLET TEMP	428	DEGF
PI-05022	DRUM PRESSURE	1302	PSIG	PDI-02A51	BH DIFF PRESS	5.1	"н2о
LI-05018	DRUM LEVEL	-0.1	"NWL	JI-03020	GENERATOR GROSS	16.9	MW
PI-05013	FEEDWATER PRESS	1362	PSIG	JI-03022	STATION SERVICE	2.6	MW
FI-05011	FEEDWATER FLOW	143.38	KLB/H	CALC	STATION NET PWR	14.3	MW
ті-05051	BFP SUCTION TEMP	307	DEGF	JIC-03020	GROSS MW PROD 7	745.38	MWHRS
TI-05023	FW TEMP ECON IN	408	DEGF	JI-03022	STA.SERVICE	19.84	MWHRS
PI-06012	DEAERATOR PRESS	58.3	PSIG	JQI-03024	NET MHR PROD	086.00	MWHRS
TI-06006	COND DISCH TEMP	144	DEGF	FI-30170	FIRING RATE	52.0	PCNT
TI-09001	COND RCVR TEMP	145	DEGF	DB-00106	CEM NH3	0.5	PPM
TI-09023	COND LEG A	73.7	DEGF	DB-00109	STACK OPACITY	0.9	%
TI-09024	COND LEG B	73.7	DEGF	AI-02030	BOILER EXIT 02	3.1	%02
TI-09021	EXHAUST TEMP	_105	DEGF	DB-00108	CEM FLUE GAS 02	5.0	%02
PI-09004	TURBINE EXH PRESS	5.10	"HGA	DB-00107	CEM CO	334	PPM
LI-09030	DEMIN TANK LEVEL	77.2	"LVL	DB-00105	CEM NOX	31	PPM
				S02	CEM_SO2	0	PPM
PIC-02020	ID FAN INLET	. 96	%OPEN	UREA FLOW	RATE %	0.0	. %
PI-02020	FURNACE PRESSURE	-0.19	"H2O	% CH4	% METHANE	-0.15	% CH4
PIC-02003	FD FAN INLET	1,26	%OPEN	FLOW CH4	LFG GAS FLOW	-751.9	CFM
PIC-02003	FD DUCT PRESSURE	13.5	"WC	LFG METER	LFG MASS FLOW	965.9	MSCF
FI-02001	FD AIR FLOW	220.08	KLB/H	LFG METER	LFG HEAT FLOW	6026.3	MMBTU
02001-		100 40		LFG_SUC	LFG SUCTION	-0.34	"HZO
F1-02001B	UGA FLOW(CALC)	160.49	KLB/H	WT-1000	BLR WOOD FEED	8/15.4	TONS
FIC-020010	OFA FAN INLET	50	%OPEN	WT-2000	WOOD REIURN	3010.0	IONS
P1-02007	OFA DISCHG PRESS	-12	WC (III	0011		CTOD	
F1-02007	OVERFIRE AIR FLOW	27.20	KLB/H	DDOT	DDUL START STOP	STOP	
FI~14003	GAS BUKNEK FLOW	7.0	KLB/H	SPEED DDU.	LPAPEK FEED I	0.0	
					DUUZ SIAKI SIOP	510P	
. مو				SPEED DDU.	ZPAPEK FEED Z	0.0	
2 000	8 F. 2 - 11						

LOG : 26-JUN-13 11:20:16 LCP-47 LOG REQUESTED

PERFORMANCE

START MS.3

.

	"PINETREE	POWER-F	TTCHBUR	J PERFORMAN	CE LOG"		
FI-03019	STEAM FLOW	133.02	КРРН	AMBIENT	OUTSIDE AIR TEM	P 80	DEGF
ті-03013	MAIN STEAM TEMP	952	DEGF				
pi-03016	MAIN STEAM PRESS	1238	PSIG	TI-02004	FD OUT AIR HTR	IN 91	DEGF
				ті-02039	AH AIR OUT TEMP	451	DEGF
FI-05012	ATTEMP SPRAY FLOW	15.48	KLB/H	TI-02035	ECON GAS IN	721	DEGF
TI-03007	ATTEMP INLET TEMP	926	DEGF	ті-02036	AH GAS IN TEMP	554	DEGF
TIC-03010	ATTEMP OUT TEMP	732	DEGF	ті-02042	AH GAS OUT TEMP	315	DEGF
FI-10012	BLOWDOWN FLOW	0.4	KLB/H	ті-02в51	BH INLET TEMP	428	DEGF
TI-03A05	DRUM TEMP	583	DEGF	ті-02с51	BH OUTLET TEMP	422	DEGF
PI-05022	DRUM PRESSURE	1278	PSIG	PDI-02A51	BH DIFF PRESS	5.0	"H2O
LI-05018	DRUM LEVEL	0.2	"NWL	JI-03020	GENERATOR GROSS	16.0	MW
PI-05013	FEEDWATER PRESS	1332	PSIG	JI-03022	STATION SERVICE	2.6	MW
FI-05011	FEEDWATER FLOW	133.70	KLB/H	CALC	STATION NET PWR	13.4	MW
ті-05051	BFP SUCTION TEMP	303	DEGF	JIC-03020	GROSS MW PROD	7751.74	MWHRS
ті-05023	FW TEMP ECON IN	405	DEGF	JI-03022	STA.SERVICE	20.84	MWHRS
PI-06012	DEAERATOR PRESS	54.7	PSIG	JQI-03024	NET MHR PROD	9087.08	MWHRS
TI-06006	COND DISCH TEMP	139	DEGF	FI-30170	FIRING RATE	51.0	PCNT
TI-09001	COND RCVR TEMP	_140	DEGF	DB-00106	CEM NH3	0.5	PPM
TI-09023	COND LEG A	73.7	DEGF	DB-00109	STACK OPACITY	0.8	%

Page 3

FitChburg

RATA Report For 6/26/2013, Hour 08:00

Time	02 ४	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX 1b/MBtu	NH3 lb/MBtu
06/26/2013 08:25	5 5	21.8	3 4	153 8	0.0	0.045	0.003
06/26/2013 08:25	5.5	22.2	1.9	171.8	0.0	0,045	0.001
06/26/2013 08:27	5.5	22.0	2.3	145.1	0.0	0.045	0.002
06/26/2013 08:28	5.6	21.1	4.2	131,2	0.0	0.044	0.003
06/26/2013 08:29	5.7	21.9	3.5	121.9	0.0	0.046	0.003
06/26/2013 08:30	5.6	23.0	1.8	119.0	0.0	0.048	0.001
06/26/2013 08:31	5.5	22.9	1.0	171.0	0.0	0.047	0.001
06/26/2013 08:32	5.5	22.3	2.0	191.7	0.0	0.046	0.002
06/26/2013 08:33	5.5	21.8	3.0	154.7	0.0	0.045	0.002
06/26/2013 08:34	J.0 5 9	21.7	4.2	127.7	0.0	0.047	0.003
06/26/2013 08:36	6.1	22.9	4.4	114.0	0.0	0.050	0.004
06/26/2013 08:37	6.0	24.0	2.0	136.7	0.0	0.051	0.002
06/26/2013 08:38	5.8	24.7	1.9	100.7	0.0	0.052	0.001
06/26/2013 08:39	5.9	23.8	3.4	104.7	0.0	0.051	0.003
06/26/2013 08:40	5.8	24.5	3.8	106.4	0.0	0.052	0.003
06/26/2013 08:41	5.5	24.8	3.9	115.9	0.0	0.051	0.003
06/26/2013 08:42	5.8	25.7	3.6	208.8	0.0	0.054	0.003
06/26/2013 08:43	5.9	26.0	3.9	127 9	0.0	0.055	0.003
06/26/2013 $08:4406/26/2013$ $08:45$	6.0	27.0	29	111 3	0.0	0.050	0.003
06/26/2013 08:45	6.3	28.4	1.6	92.9	0.0	0.063	0.001
06/26/2013 08:47	6.2	28.5	0.8	91.8	0.0	0.062	0.001
06/26/2013 08:48	6.1	27.9	0.4	132.0	0.0	0.060	0.000
06/26/2013 08:49	5.8	27.2	1.4	105.2	0.0	0.057	0.001
06/26/2013 08:50	5.8	25.9	5.8	107.5	0.0	0.054	0.004
06/26/2013 08:51	. 5.8	27.6	4.9	124.8	0.0	0.058	0.004
06/26/2013 08:52	5.9	29.1	3.2	112.7	0.0	0.062	0.003
06/26/2013 08:53	6.0	29.8	1.3	128.2	0.0	0.064	0.001
06/26/2013 08:54	6.0	29.9	0.0	122.7	0.0	0.064	0.000
06/26/2013 08:55	6.0	29.5	1 3	100.0	0.1	0.005	0.000
06/26/2013 08.50	5.8	27.6	0.7	94.0	. 0.0	0.058	0.001
06/26/2013 08:58	5.8	27.4	2.1	106.3	0.0	0.058	0,002
06/26/2013 08:59	5.7	26.9	2.5	148.5	0.0	0.056	0.002
06/26/2013 09:00	5.6	28.0	3.0	117.8	0.1	0.058	0.002
06/26/2013 09:01	5.6	27.6	3.8	106.7	0.1	0.057	0.003
06/26/2013 09:02	5.8	28.4	2.8	99.2	0.1	0.060	0.002
06/26/2013 09:03	5.4	29.2	0.6	97.9	0.1	0.059	0.000
06/26/2013 09:04	5.4	29.3	1.1	152.8	0.0	0.059	0.001
06/26/2013 09:05	5.5	27.0	4.0	127 9	0.0	0.058	0.003
06/26/2013 09:07	5.6	20.5	3.5	109.9	0.0	0.060	0.003
06/26/2013 09:08	5.5	30.0	2.3	101.2	0.1	0.061	0.002
06/26/2013 09:09	5.7	30.2	2.9	94.6	0.1	0.063	0.002
06/26/2013 09:10	5.7	29.5	2.2	128.4	0.1	0.061	0.002
06/26/2013 09:11	5.6	31.6	0.5	113.9	0.1	0.065	0.000
06/26/2013 09:12	5.7	29.9	3.4	111.4	0.1	0.062	0.003
06/26/2013 09:13	5.7	30.4	3.1	106.4	0.1	0.063	0.002
06/26/2013 09:14	5.6	31.3	2.3	124.3	0.1	0.065	0.002
06/26/2013 09:15 06/26/2013 09:16	5.7	31.5	2.7	156.5	0.1	0.066	0.002
06/26/2013 09.17	57	32.9	2.1	119.6	0,1	0.069	0.002
06/26/2013 09:18	5.7	33.1	1.2	103.9	0.1	0.069	0.001
06/26/2013 09:19	5.4	33.2	0.1	106.3	0.1	0.067	0.000
06/26/2013 09:20	5.6	32.5	0.5	109.7	0.1	0.067	0.000
06/26/2013 09:21	5.8	31.9	0.2	147.3	0.1	0.067	0.000
06/26/2013 09:22	5.7	32.5	0.0	122.6	0.0	0.068	0.000
06/26/2013 09:23	5.6	29.1	1.0	115.9	0.0	0.060	0.001
06/26/2013 09:24	5.8	28.5	2.1	134.5	0.0	0.060	0.002
06/26/2013 09:25	5.9	28.9	0.3	130.4 110 /	0.1	U.U61 0 0£1	0.000
06/26/2013 09:20	5.9 5.9	∠0.0 27 2	0.0	130 8	0.0	0.058	0.000
06/26/2013 09:28	5.8	26.5	0.0	98.2	0.0	0.056	0.000

RATA Run # 1

Verified By:

.

CEMDAS(TM) Data Acquisition System

.

Page 1 of 4

Fitchburg

RATA Report

For 6/26/2013, Hour 08:00

Time	02 १	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX lb/MBtu	NH3 lb/MBtu
06/26/2013 09:29	5.4	23.8	1.7	99.6	0.0	0.048	0.001
06/26/2013 09:30	5.2	23.4	3.3	168.1	0.0	0.047	0.002
06/26/2013 09:31	5.3	23.5	3.9	179.5	0.0	0.047	0.003
06/26/2013 09:32	5.6	24.2	2.1	179.7	0.0	0.050	0.002
06/26/2013 09:33	5.4	25.1	0.0	161.1	0.0	0.051	0.000
06/26/2013 09:34	5.2	24.0	0.6	153.0	0.0	0.048	0.000
06/26/2013 09:35	5.3	22.4	2.6	149.2	0.0	0.045	0.002
Average Value	5.7	27.1	2.2	128.2	0.0	0.057	0.002

RATA Run # 1

Verified By:

.

------CEMDAS(TM) Data Acquisition System

Page 2 of 4

RATA Report For 6/26/2013, Hour 08:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
06/26/2013 08:25	0.192	0.000	10.6	0.6	45.3	0.0
06/26/2013 08:26	0.214	0.000	10.7	0.3	50.6	0.0
06/26/2013 08:27	0.181	0.000	10.6	0.4	42.7	0.0
06/26/2013 08:28	0.165	0.000	10.2	0.7	38.6	0.0
06/26/2013 08:29	0.155	0.000	10.6	0.6	35.8	0.0
06/26/2013 08:30	0.150	0.000	11:1	0.3	34.9	0.0
06/26/2013 08:31	0.213	0.000	10 0	0.2	50.4	0.0
06/26/2013 08:32	0.239	0.000	10.8	0.4	45 5	0.0
06/26/2013 08:34	0.200	0.000	10.5	0.7	45.9	0.0
06/26/2013 08:35	0.165	0.000	10.8	0.7	37.5	0.0
06/26/2013 08:36	0.150	0.000	11.1	0.8	33.5	0.0
06/26/2013 08:37	0.178	0.000	11.6	0.4	40.1	0.0
06/26/2013 08:38	0.129	0.000	11.9	0.3	29.6	0.0
06/26/2013 08:39	0.135	0.000	11.5	0.6	30.8	0.0
06/26/2013 08:40	0.136	0.000	11.8	0.7	31.3	0.0
06/26/2013 08:41	0.144	0.000	12.0	0.7	54.2	0.0
06/26/2013 08:43	0.206	0.000	12.5	0.7	47.1	0.0
06/26/2013 08:44	0.167	0.000	13.1	0.7	37.6	0.0
06/26/2013 08:45	0.147	0.000	13.4	0.5	32.7	0.0
06/26/2013 08:46	0.125	0.000	13.7	0.3	27.2	0.0
06/26/2013 08:47	0.122	0.000	13.8	0.1	27.0	0.0
06/26/2013 08:48	0.174	0.000	13.5	0.1	38.9	0.0
06/26/2013 08:49	0.135	0.000	13.2	0.3	31.0	0.0
06/26/2013 08:50	0.138	0.000	12.5	1.0	31.7	0.0
06/26/2013 08:51	0.160	0.000	14 1	0.9	20.⊃ 33.1	0.0
06/26/2013 08:53	0.140	0.000	14.4	0.2	37.7	0.0
06/26/2013 08:54	0.160	0.000	14.5	0.0	36.1	0.0
06/26/2013 08:55	0.139	0.000	14.1	0.1	31.3	0.1
06/26/2013 08:56	0.131	0.000	13.3	0.2	29.2	0.0
06/26/2013 08:57	0.120	0.000	13.3	0.1	27.7	0.0
06/26/2013 08:58	0.136	0.000	13.2	0.4	31.2	0.0
06/26/2013 08:59	0.188	0.000	13.0	0.4	43.8	0.0
06/26/2013 09:00	0.148	0.000	13.5	0.5	34./	0.1
06/26/2013 09:01	0.134	0.000	13.7	0.7	29.2	0.1
06/26/2013 09:03	0.121	0.000	14.1	0.1	28.8	0.1
06/26/2013 09:04	0.189	0.000	14.2	0.2	45.0	0.0
06/26/2013 09:05	0.201	0.000	13.5	0.7	47.6	0.0
06/26/2013 09:06	0.161	0.000	13.7	0.8	37.8	0.0
06/26/2013 09:07	0.138	0.000	14.1	0.6	32.3	0.0
06/26/2013 09:08	0.126	0.000	14.5	0.4	29.7	0.1
06/26/2013 09:09	0,120	0.000	14.6	0.5	27.8	0.1
06/26/2013 09:10	0.143	0.000	15 3	0.4	37.0	0.1
06/26/2013 09:12	0.141	0.000	14.5	0.6	32.8	0.1
06/26/2013 09:13	0.135	0.000	14.7	0.6	31.4	0.1
06/26/2013 09:14	0.156	0.000	15.2	0.4	36.7	0.1
06/26/2013 09:15	0.200	0.000	15.3	0.5	46.6	0.1
06/26/2013 09:16	0.199	0.000	15.4	0.5	46.2	0.1
06/26/2013 09:17	0.152	0.000	15.9	0.4	35.2	. 0.1
06/26/2013 09:18	0.132	0.000	16.0	0.2	30.6	0.1
06/26/2013 09:19	0.131	0.000	16.1	0.0	5.1t 5.7t	0.1
06/26/2013 09:20	0.120	0.000	15./	0.1	22.3 47 5	
06/26/2013 09:22	0.156	0.000	15.8	0.0	36.2	0.0
06/26/2013 09:23	0.146	0.000	14.1	0.2	34.3	0.0
06/26/2013 09:24	0.172	0.000	13.8	0.4	39.6	0.0
06/26/2013 09:25	0.168	0.000	14.0	0.1	38.4	0.1
06/26/2013 09:26	0.154	0.000	13.8	0.0	35.1	0.0
06/26/2013 09:27	0.169	0.000	13.1	0.0	38.4	0.0

.

Verified By:

RATA Run # 1

CEMDAS(TM) Data Acquisition System

Page 3 of 4

RATA Report For 6/26/2013, Hour 08:00

Time	CO 1b/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
06/26/2013 09:28	0,126	0.000	12.8	0.0	28.9	0.0
06/26/2013 09:29	0.123	0.000	11.5	0.3	29.4	0.0
06/26/2013 09:30	0.204	0.000	11.4	0.6	49.7	0.0
06/26/2013 09:31	0.220	0.000	11.4	0.7	53.0	0.0
06/26/2013 09:32	0.226	0.000	11.7	0.4	53.0	0.0
06/26/2013 09:33	0.199	0.000	12.2	0.0	47.5	0.0
06/26/2013 09:34	0.186	0.000	11.6	0.1	45.2	0.0
06/26/2013 09:35	0.183	0.000	10.8	0,5	44.0	0.0
Average Value	0.163	0.000	13.1	0.4	37.7	0.0

RATA Run # 1

Verified By:

CEMDAS(TM) Data Acquisition System

Page 4 of 4

-----RATA Report

For 6/26/2013, Hour 09:00

Time	02 १	NOX PPM	NH3 PPM	CO PPM	SO2 PPM	NOX 1b/MBtu	NH3 lb/MBtu
06/26/2013 09:55	4.8	21.8	2.4	259.3	0.0	0.042	0.002
06/26/2013 09:56	4,8	20.7	3.9	419.5	0.0	0.040	0.003
06/26/2013 09:57	4.9	20.8	4.6	431.0	0.0	0.040	0.003
06/26/2013 09:58	5.2	21.6	3.7	310.8	0.0	0.043	0.003
06/26/2013 09:59	5.4	21.8	3.1	174.4	0.0	0.044	0.002
06/26/2013 10:00	4.9	21.8	1.3	234.4	0.0	0.042	0.001
06/26/2013 10:01	4.6	22.0	1.2	375.4	0.0	0.042	0.001
06/26/2013 10:02	4.6	20.5	3.8	511.8	0.0	0.039	0.003
06/26/2013 10:03	4.7	20.7	4.7	465.7	0.0	0.040	0.003
06/26/2013 10:04	5.0	21.5	4.8	354.2	0.0	0.042	0.003
06/26/2013 10:05	5.1	22.2	3.4	243.6	0.0	0.044	0.002
06/26/2013 10:06	4.9	23.0	1.4	247.9	0.0	0.045	0.001
06/26/2013 10:07	4.9	22.9	2.2	284.0	0.0	0.045	0.002
06/26/2013 10:08	5.1	22.4	3.1	234.7	0.0	0.044	0.002
06/26/2013 10:09	4,9	22.7	2.0	197.4	0.0	0.044	0.002
06/26/2013 10:10	4.0	22.0	2.5	511 8	0.0	0.043	0.002
06/26/2013 10:12	47	22.6	2.0	511 8	0.0	0.043	0.002
06/26/2013 10:13	5.0	22.0	5.7	363.3	0.0	0.044	0.004
06/26/2013 10:14	5.1	24.0	4.6	216.1	0.0	0.047	0.003
06/26/2013 10:15	5.1	25.2	2.9	182.2	0.0	0.050	0.002
06/26/2013 10:16	5.0	25.6	1.8	230.1	0.0	0.050	0.001
06/26/2013 10:17	5.0	25.4	0.9	309.9	0.0	0.050	0.001
06/26/2013 10:18	5.3	24.4	2.1	225.5	0.0	0.049	0.002
06/26/2013 10:19	5.3	23.3	4.4	145.2	0.0	0.047	0.003
06/26/2013 10:20	4.9	24.5	4.1	160.1	0.0	0.048	0.003
06/26/2013 10:21	4.9	25.3	4.3	. 237.0	· 0.0	0.049	0.003
06/26/2013 10:22	5.0	25.6	2.6	401.1	0.0	0.050	0.002
06/26/2013 10:23	5.4	27.1	1.4	237.4	0.0	0.055	0.001
06/26/2013 10:24	5.4	25.9	2.1	144.7	0.0	0.053	0.002
06/26/2013 10:25	5.1	26.3	2.1	148.8	0.0	0.052	0.002
06/26/2013 10:26	5.0	25.9	1.9	233.7	0.0	0.051	0.001
06/26/2013 10:27	5.4	25.8	1.9	267.9	0.0	0.051	0.001
06/26/2013 10:28 06/26/2013 10:29	⊃.⊥ 5 1	25.5	2.0	196 2	0.0	0.050	0.002
06/26/2013 10.20	4 8	25.1	4 2	264 0	0.0	0.050	0.003
06/26/2013 10:31	4.7	25.9	4.0	404.5	0.1	0.049	0.003
06/26/2013 10:32	5.1	26.7	3.6	411.6	0.0	0,053	0.003
06/26/2013 10:33	5.1	27.7	0.9	279.5	0.0	0.055	0.001
06/26/2013 10:34	5.0	27.9	1.1	224.6	0.0	0.055	0.001
06/26/2013 10:35	4.8	26.9	2.3	288.0	0.0	0.052	0.002
06/26/2013 10:36	4.9	27.2	2.8	399.0	0.0	0.053	0.002
06/26/2013 10:37	5.0	27.0	4.1	286.3	0.0	0.053	0.003
06/26/2013 10:38	5.3	28.2	2.8	289.0	0.0	0.057	0.002
06/26/2013 10:39	5.2	28.8	0.8	236.8	0.0	0.057	0.001
06/26/2013 10:40	5.0	29.0	0.9	222.9	0.1	0.057	0.001
06/26/2013 10:41	5.1	27.9	3.3	241.7	0.1	0.055	0.002
06/26/2013 10:42	5.2	28.3	3.3	218.9	0.1	0.056	0.002
06/26/2013 10:43	5.4	28.9	4.8	178.0	0.0	0.059	0.004
06/26/2013 10:44	5.6	29.5	2.8	204.1	0.0	0.061	0.002
06/26/2013 10:45	5.3	31.4	0.3	249.8	0.0	0.063	0.000
06/26/2013 10:46	⊃.∠ ⊑ ⊑	22.0	1.0	244.5 194 6	0.0	0.059	0.001
06/26/2013 10.48	J.J 5 5	20.5	5.0	178 6	0.0	0.050	0.003
06/26/2013 10:49	 	20.0 20.0	1.1 0 7	194 5	0.0	0.001	0,001
06/26/2013 10:50	5.1	28.8	2.6	226.7	0.0	0.057	0.002
06/26/2013 10:51	5.1	29.1	3.5	259.5	0.0	0.058	0.003
06/26/2013 10:52	4.9	29.6	2.8	394.6	0.0	0.058	0.002
06/26/2013 10:53	4.9	30.1	3.0	462.0	0.0	0.058	0,002
06/26/2013 10:54	4.9	30.2	3.6	459.3	0.0	0.059	0.003
06/26/2013 10:55	5.0	31.0	2.2	461.8	0.0	0.061	0.002
06/26/2013 10:56	5.1	31.5	0.6	384.3	0.0	0.062	0.000
06/26/2013 10:57	5.1	30.6	1.8	310.8	0.0	0.060	0.001

RATA Run # 2

Verified By:

CEMDAS(TM) Data Acquisition System

Page 1 of 4

.

Created: 06/27/13 14:00 Fitchburg Unit 1

RATA Report P

For 6/26/	2013,	Hour	09:00
-----------	-------	------	-------

Time	02 NOX		NH3	NH3 CO		NOX	NH3	
	% PPM		PPM	PPM PPM		1b/MBtu	lb/MBtu	
Average Value	5.0	25.8	2.8	287.9	0.0	0.051	0.002	

RATA Run # 2

Verified By:

CEMDAS(TM) Data Acquisition System

Page 2 of 4

RATA Report

For 6/26/2013, Hour 09:00

Time	CO lb/MBtu	SO2 lb/MBtu	NOX lb/hr	NH3 lb/hr	CO lb/hr	SO2 lb/hr
06/26/2012 09:55	0 204	0 000	10 6		76 5	
06/26/2013 09:55	0.304	0.000	10.6	0.4	124 2	0.0
06/26/2013 09:57	0.510	0.000	10.1	0.8	126.8	0.0
06/26/2013 09:58	0.377	0.000	10.4	0.7	91.5	0.0
06/26/2013 09:59	0.215	0.000	10,6	0,6	51.4	0,0
06/26/2013 10:00	0.277	0.000	10.5	0.2	68.9	0.0
06/26/2013 10:01	0.433	0.000	10.6	0.2	110.3	0.0
06/26/2013 10:02	0.590	0.000	9.9	0.7	150.6	0.0
06/26/2013 10:03	0.542	0.000	10.0	0.8	137.1	0.0
06/26/2013 10:04	0.423	0.000	10.4	0.9	103.9	0.0
06/26/2013 10:05	0,293	0.000	10.8	0.6	71.8	0.0
06/26/2013 10:06	0.293	0.000	11.2	0.3	73.2	0.0
06/26/2013 10:07	0.336	0.000	12.3	0.4	93.1	0.0
06/26/2013 10:08	0.282	0.000	12.3	0.6	66 1	0.0
06/26/2013 10:10	0.200	0.000	12.3	0.5	96.9	0.0
06/26/2013 10:11	0.586	0,000	13.0	0.5	175.6	0.0
06/26/2013 10:12	0.595	0.000	12.8	0.9	176.3	0.0
06/26/2013 10:13	0.433	0.000	12.7	1.2	124.2	0.0
06/26/2013 10:14	0.260	0.000	13.4	0.9	73.6	0.0
06/26/2013 10:15	0.219	0.000	13.9	0.6	61.3	0.0
06/26/2013 10:16	0.274	0.000	14.2	0.4	77.7	0.0
06/26/2013 10:17	0.370	0.000	14.1	0.2	104.4	0.0
06/26/2013 10:18	0.276	0.000	13.6	0.4	76.6	0.0
06/26/2013 10:19	0.178	0.000	13.1	0.9	49.6	0.0
06/26/2013 10:20	0.189	0.000	13.8	0.9	54.9	0.0
06/26/2013 10:21	0.200	0.000	14.3	0,9	135 7	0.0
06/26/2013 10.22	0.478	0.000	14.2	0.3	79 4	0.0
06/26/2013 10:24	0.179	0.000	14.3	0.4	48.5	0.0
06/26/2013 10:25	0.179	0.000	14.4	0.4	49.6	0.0
06/26/2013 10:26	0,279	0.000	14.0	0.4	76.9	0.0
06/26/2013 10:27	0.325	0.000	14.1	0.4	89.0	0.0
06/26/2013 10:28	0.274	0.000	13.8	0.6	75.9	0.0
06/26/2013 10:29	0.236	0.000	13.8	0.8	65.4	0.0
06/26/2013 10:30	0.310	0.000	14.2	0.9	89.7	0.1
06/26/2013 10:31	0.470	0.000	14.2	0.8	135.3	0.1
06/26/2013 10:32	0.495	0.000	14.7	0.7	137.5	0.0
06/26/2013 10:34	0.258	0.000	15 3	0.2	75 1	0.0
06/26/2013 10:35	0.338	0.000	14.9	0.5	97.2	0.0
06/26/2013 10:36	0.472	0.000	15.1	0.6	134.8	0.0
06/26/2013 10:37	0.342	0.000	14.8	0.8	95.7	0.0
06/26/2013 10:38	0.354	0.000	15.6	0.6	97.0	0.0
06/26/2013 10:39	0.287	0.000	15.9	0.2	79.7	0.0
06/26/2013 10:40	0.266	0.000	16.0	0.2	74.9	0.1
06/26/2013 10:41	0.291	0.000	15.5	0.7	81.8	0.1
06/26/2013 10:42	0.266	0.000	15.9	0.7	74.8	0.1
06/26/2013 10:43	0.220	0.000	16.4	1.0	61.4 70 7	0.0
06/26/2013 10:44	0.257	0.000	17 8	0.8	70.7 86 0	0.0
06/26/2013 10:46	0.296	0.000	16.8	0.2	83.6	0.0
06/26/2013 10:47	0.242	0.000	15.9	0.7	66.4	0.0
06/26/2013 10:48	0.223	0.000	16.5	0.2	60.7	0.0
06/26/2013 10:49	0.224	0.000	16.8	0.1	62.9	0.0
06/26/2013 10:50	0.273	0.000	16.2	0.5	77.6	0.0
06/26/2013 10:51	0.312	0.000	16.4	0.7	89.2	0.0
06/26/2013 10:52	0.467	0.000	16.9	0.6	137.3	0.0
06/26/2013 10:53	0.546	0.000	17.1	0.6	159.9	0.0
U6/26/2013 10:54	0.543	0.000	17.1	0.8	158.4	0.0
06/26/2013 10:55	0.551	0.000	17.5	0.5	120 5	0.0
06/26/2013 10:57	0.374	0.000	17.1	0.4	105.8	0.0

Verified By:

RATA Run # 2

CEMDAS(TM) Data Acquisition System

Page 3 of 4

PineTree Power Fitchburg

RATA Report For 6/26/2013, Hour 09:00

Time	CO	SO2	NOX	NH3	CO	SO2
	lb/MBtu	1b/MBtu	lb/hr	lb/hr	lb/hr	lb/hr
Average Value	0.343	0.000	14.1	0.6	94.8	0.0

CEMDAS(TM) Data Acquisition System

RATA Run # 2

Verified By:

Appendix G

FIELD ANALYSIS job: Minetree Fitchburg test date(s): 6-26-13; 6-27-13

		UALIDINA		
DATE	TIME	TEMP	OHAUS	SCALE
7-10-13	1170	77	1-0000	1.0000
7-11-13	1200	77	1.0000	1.0001
7-11-13	1200	33	\$0.0000	50.0007
7-12-13	1000	76	50.0000	50,0007

CALIBRATION

SAMPLE FILTER RESULTS

	DATE:	7-10-13	7-11-13					
	TIME:	1130	1200					
FIL	TER#/ RUN#	weight 1	weight 2	weight 3	weight 4	weight 5	final	tare
3590	739-1	0:3545	0.3544				0.3545	0.3429
3541	TSP-2	0.3570	0.3571		а. С		0.3571	0.3432
3592	TSP-3	0.3629	0.3628	с.			0.3629.	0.3419
3593	TSP blank	0.3375	0.3377				0.3376	0.3377
372	PM2.5-1	0.1206	0.1208	t			0.1207	0.1165
373	PM2.5-2	0.1200	0.1202				0.1201	0.1158
374	PM7.5-3	0.1203	0.1203				0.1203	0.1163
391	Mis blank	0.1158	0.1159				0.1159	0.1159
			-					
	•							
	-		,					

SAMPLE BEAKER RESULTS

		211-12	7.17.17]		
	TIME	17.00	1000						
BE	AKER#/ RUN#	weight 1	weight 2	weight 3	weight 4	weight 5	final	tare	vol (ml)
21	TSP-1	49,6213	49.6203		<u>_</u>		49.6213	49.6145	60
22	TSP-2	60.2762	60.2784				602763	60.2673	60
23	TSP-3	64.4696	64.4697				64.4695	64.4558	70
24	pmio-i	622503	62.2603				62.2603	62.2545	60
25	PM10-2	61.1679	61.1682				61.1681	61.1617	70
26	PM10-3	65.5854	65-5858				15.5856	65,5810	70
27	PM25-1	61.4327	61.4327				61.4327	61.4310	60
28	PM2.5-2	65.5620	65.5622				65.5621	65.5595	60
29	PM2.5-3	63.3908	63:3910				63.3909	\$3199	60
30	blank	66-1445	66.8443				66.8444	66.8442	100
			-		-				

FIELD ANALYSIS job: MARTINE Fitchburg test date(s): 6-26-13; 6-27-13

CALIBRATION									
DATE	TIME	TEMP	OHAUS	SCALE					
7-10-13	1130	77	1.0000	1.0000					
7-11-13	1200	77	1.0000	1.0001					
7-11-13	1200	77	\$2.0000	\$0.0007					
7-12-13	1000	76	50.0000	50,0007					
			<u> </u>						

60ml mr - 50% cm bleve 1.63.2238 60ml al 3. 160ml al 3. 160ml al 3. 160ml al 3. 160ml al 3.

Fixed: 0.3467 SAMPLE FILTER RESULTS

	DATE:	7-10-13	7-11-13					
FILT		11.50	1 LOU				E	
	ER#/ KUN#	weight I	weight 2	weight 3	weight 4	weight 5	tinal	tare
3590	730-1	0.3545	0.3544				0.3545	0.3429
3591	TSP-2	0.3570	0.3571				0.3571	0.3432
3592	TSP-3	0.3629	0.7628				0.3629	0.3419
2593	750 blank	0.3375	0.3377				0.3376	0.3377
372	PM2.5-1	0.1206	0.1208				0.1207	0.1165
373	PM2.5-2	0.1200	0.1202				0.1201	0.1158
374	PM2.5-3	0.1203	0.1203				0.1203	0.1163
331	Mis blank	0.1158	0.1159				0.1159	0.1159
	-							

SAMPLE BEAKER RESULTS

	DATE:	7-11-13	7-12-13						
	TIME:	1200	1000				-		
BEAKER#/ R	UN#	weight 1	weight 2	weight 3	weight 4	weight 5	final	tare	vol (ml)
21 +3P-1	۱	496213	49.6203				49.6213	49.6145	60
22 750-7	L	60.2762	60.2784				602763	60.2673	60
23 TSP-3	3	64.4696	64.4693				64.4695	64.4558	70
24 pmio-	l	622503	62.2603				62.2603	62.2545	60
25 PMIO-	2	66.1679	61.1682			-	61.1681	61.1617	70
26 PM10-	3	65.5754	65-5838				65.5856	65.5810	70
27 PM25.	-1	61.4327	61.4327				61.4327	61.4310	60
28 p.m.s	-2	65.5620	65.5622				65.5621	65.5595	60
29 PM2.5	-3	63.3908	63.3910				63.3909	66.3899	60
30 blank	٤	66-1445	66.8443				66.8444	66.8442	100

Maxxam

Your P.O. #: 754858 Site Location: CCA - FITCHBURG Your C.O.C. #: N/A

Attention: Bob Arnold

CEM Services Inc 360 Old Colony Rd Suite 1 Norton, MA USA 02766

Report Date: 2013/07/16

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3A4658 Received: 2013/07/02, 12:45

Sample Matrix: Stack Sampling Train # Samples Received: 3

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Ammonium in H2SO4 Impingers (CTM-027)	3	2013/07/04	2013/07/05 BRL SOP-00107	EPA CTM-027
Volume of Sulfuric Acid Impinger	3	N/A	2013/07/04	

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Clavton Johnson 16 Jul 2013 15:26:58 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Clayton Johnson, Project Manager - Air Toxics, Source Evaluation Email: CJohnson@maxxam.ca Phone# (905) 817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Page 1 of 6

Maxam

Success Through Sciences

CEM Services Inc

Maxxam Job #: B3A4658 Report Date: 2013/07/16

Site Location: CCA - FITCHBURG Your P.O. #: 754858

EPA CTM 027 AMMONIA (STACK SAMPLING TRAIN)

Maxxam ID		SC3011	SC3011	1	SC3012		SC3013		
Sampling Date		2013/06/25	2013/06/25		2013/06/26		2013/06/26		
		00:01	00:01		00:01		00:01		
COC Number		N/A	N/A		N/A		N/A		
	Units	NH3-50%	NH3-50%	RDL	NH3-100%-1	RDL	NH3-100%-2	RDL	QC Batch
			Lab-Dup						
Sulfuric Acid Volume	ml	447	N/A	1	524	1	547	1	3268394
Ammonium (NH4)	ug	190	180	25	1100	26	1200	27	3268388
N/A = Not Applicable RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

Maxlam

Maxxam Job #: B3A4658

Report Date: 2013/07/16

CEM Services Inc

Site Location: CCA - FITCHBURG Your P.O. #: 754858

Test Summary

Maxxam ID	SC3011					Collected	2013/06/25
Sample ID Matrix	Stack Sampling Train					Received	2013/07/02
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Ammonium in H29	SO4 Impingers (CTM-027)	IC/SPEC	3268388	2013/07/04	2013/07/05	Ann-Mari	e Stern
Volume of Sulfurio	Acid Impinger		3268394	N/A	2013/07/04	Frank Mo	
Maxxam ID Sample ID	SC3011 Dup NH3-50%					Collected Shipped	2013/06/25
Matrix	Stack Sampling Train					Neceiveu	2013/07/02
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Ammonium in H28	SO4 Impingers (CTM-027)	IC/SPEC	3268388	2013/07/05	2013/07/05	Ann-Mari	e Stern
Maxxam ID Sample ID Matrix	SC3012 NH3-100%-1 Stack Sampling Train					Collected Shipped Received	2013/06/26 2013/07/02
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Ammonium in H29	SO4 Impingers (CTM-027)	IC/SPEC	3268388	2013/07/04	2013/07/05	Ann-Mari	e Stern
Volume of Sulfurio	c Acid Impinger		3268394	N/A	2013/07/04	Frank Mo)
Maxxam ID Sample ID Matrix	SC3013 NH3-100%-2 Stack Sampling Train.					Collected Shipped Received	2013/06/26 2013/07/02
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Ammonium in H2	SO4 Impingers (CTM-027)	IC/SPEC	3268388	2013/07/04	2013/07/05	Ann-Mari	e Stern
Volume of Sulfurio	c Acid Impinger		3268394	N/A	2013/07/04	Frank Mo)

Max xam Analytics International Corporation o/a Max xam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax. (905) 817-5777 www.max xam.ca

Maxlam

Maxxam Job #: B3A4658 Report Date: 2013/07/16 **CEM Services Inc**

Site Location: CCA - FITCHBURG Your P.O. #: 754858

GENERAL COMMENTS

Results relate only to the items tested.

Maxxam

CEM Services Inc Attention: Bob Arnold Client Project #: P.O. #: 754858 Site Location: CCA - FITCHBURG

Quality Assurance Report

Maxxam Job Number: GB3A4658

QA/QC Batch Num Init	QC Type	Parameter	Date Analyzed yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3268388 A_S	Matrix Spike (SC3011) Spiked Blank Method Blank RPD - Sample/Sample Dup	Ammonium (NH4) Ammonium (NH4) Ammonium (NH4) Ammonium (NH4)	2013/07/05 2013/07/05 2013/07/05 2013/07/05	<25 5.3	100 100	% % ug %	75 - 125 90 - 110 20

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Page 5 of 6

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free. 800-563-6266 Fax. (905) 817-5777 www.maxxam.ca

Validation Signature Page

Maxxam Job #: B3A4658

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Frank Mo, B.Sc., Inorganic Lab. Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Appendix H

METHOD 5 SAMPLING DATA SHEET

Page _of ___

Facilit	y: P	inetree Fitchburg
Date	•	6/26/13
Run	:	MG-1

T. 11

Unit : Stack

Run Time: 082 5 - 0930

Kun

Filter No.: 3590 TARE 0.3439 Nozzle No.: 0250

Leak Test Data

				Initial I	Rate:				Final J	Rate:	i.	
			Pro	obe; 🔿 . ð	615	"Hg		Probe:	0.06	S "Hg		
			Pit	tots: Ø	1,2	"H ₂ O		Pitots:	Ou z	"H ₂	0	
[Init	ial Me	eter Rea	nding: 4	24.5	83	Final	Meter Re	eading:	470.0	48	
	T	ime	Trav.	Delta	Delta	Meter	DGM	DGM	Imp	Stack	Hot	Pump
	Hr	Min	Point	P	Η	Vol.	IN	Out	Temp	Temp	Temp	Vac
	ł,	2.5	Al	092	1.80	426.6	NA	93	67	367	250	4
		S	2	094	1.88	LARS.	ì	94	la C.	36%	252	5
		7.5	3	N.on	2.00	4760.6	Canal State State State	9Ú	P.C.	366	2cz	5
	æ	6	4	1.00	J.00	452.5		94	Y.C	2.9	250	C
		125	5	1.001	2.00	434,9		94	CC	269	241	5
		14	6	0.95	1.90	437.2		94	Toto	369	263	Ś
		17.5	7	0.84	1.6Q	4391		94	CC	370	240	5
		20	8	6.95	1.95	440.6		99	ľ.ŭ	269	142	5
		225	9	093	i. Ria	442.5		96	(u	368	54%	5
		X	10	n.sz	1.6.6	444,5		96	65	367	253	$\langle \rangle$
		275	11	0.73	1.46	446.3	and the second se	97	65	360	hśĭ	2
14		35	12	$\tilde{0.00}$	1.40	4429		49	6.6	254	h40	14
		310	B1	0.70	1.56	449.8		dl,	124	247	54	4
-		35	2	h. Už	1.64	451.1		9h	25	220	DET	G
		27.6	3	N.OG	2.10	44430	7	97'	66	365	53	5
		46	4	20.1	AIX	465.6		97	66	ZJÁ	549	5
		445	5	1.00	ã.on	457.6	-	97	65	1350	DCa_	$\overline{\boldsymbol{\zeta}}$
		45	6	0.90	1.20	459.6		97	67	275	DSS'	5
		Las	7	0.92	1, 24	461.6		97	ČC	371	ISC_	5
		50	8	6,96	light	4635		97	ZC	37	DSO	5
		635	9	1.9 <u>G</u>	1. 40	4656	ļ	96	33	264	253	5
		65	10	0.92	1.84	467.8		196	65	369	254	C
		515	11	0.88	136	469.5		95	66	1366	DS2	5
		10	12	6,65	11.30	4mg	J.	197	67	361	950	L <u>S</u> _
Gener	al:		(Operato	rs:	Ċonđit	ions:	M	oisture	Gross	Tare	Net
Box N	o :]	MB I	- E	Box :	_CP_	Ambient	t Temp:		Data:	254	100	ml
Delta	H@:	1.66	Pı	robe:_M	D	Pbar	*		99g	169	ling	ml
Gamn	na Y:	1.017	1 CI	EMS: B	Α	Static P	•	-0,6	[11	$\frac{100}{100}$	ml
								•		1	0	
				RAT	p 1'	2,3	\$	10.	10	561	220	5
							02	1-74				
	4~		3				7.36	1.6.44	, 0. 2	a,		
	e bac	4.	10000000000000000000000000000000000000				1.40 1.40	12.31	• 0 • 1			
	C	SERVICES	360 Old	Colony Roa	id, Suite 1,	Norton, MA	02766	· 1296	5.0.2			
						\$xmax	anna an ann an an an an an an an an an a		<u>s</u>			

7.27 12.80 0.02

METHOD 5 SAMPLING DATA SHEET Page____Of ____

Sale and

Facility: Pinetree Fitchburg

: 6/26/2013

2

Unit : Stack

Unit : Stack Run Time : <u>6955 - 1057</u>

Run

:

Date

Filter No. :_____ Nozzle No.:

Leak Test Data

					Leak	Test Da	ata		·	÷	
			Initial I	Rate:				Final I	Rate:		
		Pre	obe: 0.d	615	"Hg		Probe	7.0 C	Ø "Hg		
		Pit	tots: Ø	a Zy	"H ₂ O		Pitots:	dr. 3	"H2	0	
	Initial M	eter Rea	ading: 1	471.50	<u>~</u>	Final	Meter Re	eading:	519.	250	
	Time	Trav.	Delta	Delta	Meter	DGM	DGM	Imp	Stack	Hot	Pump
	Hr Min	Point	P	Н	Vol.	IN	Out	Temp	Temp	Temp	Vac
	a.s	A1	0.92	1.04	4736	NI /A	96	67	272	229	ÿ
	G	2	h ge	1 QA	URC	- <u>~~</u> /	65	TC	251	533	U
	ha	3	103	2.00	ind		057	87	27/	200	<
	18	4	LAC	2.10	1200	attestoo	an	bu-	苏	<u>á</u> sa	5
	IN C	5	TAC	DIA	En 2	art de la company	34	6	24	Tec 1	C.
	$ _{\zeta}$	6	A VA	1.6A	Mcz U		00	82	5/1	350	Z
	107	7	h 36	1 SA	1.80 3		1 An	27	777	ÌST	7
		8	K12	H	UN I		134	127	2-	140	4
	h)(9	1	diet U	HE C		1051	66	306	A.G	10
	Ne	10	1.00	1 0 1	HUN Z		an	85	3-12	247-	6
	5	11	h ar	i ant	49.		an	8/		274	2
	二	12	KnZ	11/6	146 6		1ab	97	27	Sut	2
	200	R1	haz	1.86	1007		13	44	34	dik.	\rightarrow
		$\frac{D1}{2}$	P.17	100	1100 7			123	5.10	the second	
		2	K C C	HAX-	1213		191	18.3	335	274	5
		<u> </u>	hdr	176	Boild		172	44	13/27	300	
		5	$\frac{1105}{100}$	BUD	P224		147	47	5/1	244	-67
-	428	5		B.W	PUZ G		HAL-	66	5-18-	<u>k</u> 21-	2
	- 15	7	$\frac{1,00}{1,00}$	9.00	501.5		171	83	328	230	5-
	- MMS	/	P.I.	1. XX	2977		147	66	13-18-	247	2
		8	6.4 <u>0</u>	<u>H.YÖ</u>	5110		12	Q7	3-35-	JA8	5
	- 725	9	0.94	hyy _	\$13,6		19-1-	64	1219	2 50-	5
	<u> </u>	10	0,93	lig 6	<u>515-6</u>		197	64	1223	5 2a	
			D-88	1.76-	507		131	16 <u>5</u>	574	RSI-	LS-
~	160	1.12	nst-	4.67	519.3	<u> </u>	LΫ́́,	100	ISXO	124g	
Gener		(T	Jperato	rs:	Condit	ions:	IVI (Disture	Gross	Tare	Net
Box N			30X :	_CP_	Ambient	t Temp:		Data:	264		mi
Delta	H(a): 1.66			.D	Pbar	:	24.7	0	163		ml
Gamn	na r: 1.01/	I CI	EM2: B	A	Static P	:	<u>-06</u>	5	IL		ml
								-			. g
									301.1	μ	
								02	Co.	. C	0
	da De	5					6.	46	13.5	5	5
							6.	63	12		د.> ۲
	C.S. BERVICES	360 Old	Colony Roa	id, Suite 1,	Norton, MA	02766	L .	80	127	7. ~	د ۱۵
							د چیا میسینی مسیر میشونی میشونی *		• > 1 	<u>~</u>	
							6.	63	13:0	o, ۵/	r and

METHOD 5 SAMPLING DATA SHEET Page of

Facilit	y: Pin	etree Fitchburg
Date	:	6/25/13
Run	•	1-Diac

Unit : Stack

Run Time : 133 5 - 143 7

Filter No. :_

Nozzle No.:_

Leak	Test	Data
------	------	------

	Initial Rate:					Final Rate:					
	Probe: O.O 6 15 "Hg					Probe: <u>a.a. 6.15</u> "Hg					
3×6,646 Pitots: 0/a 3 "H2O					Pitots: 2 "H2O				t		
Initi	Initial Meter Reading:					Final Meter Reading: 4,44					
Tir	me	Trav.	Delta	Delta	Meter	DGM	DGM	Imp	Stack	Hot	Pump
Hr I	Min	Point	Р	H	Vol.	<u>IŅ</u>	Out	Temp	Temp	Temp	Vac
		A1	0.37	1.11	382.4	N/A	98	-66	325	249	5
	5	2	<u>b39</u>	<u>Lur</u>	389.0	Į	<u>9</u> Ç	64	398	249	
		3	m43	1.29	391.8		99	<u>Ġ4'</u>	336	255	4
	16	4	X46	135	3927		99	63	736	256	Lf.
		5	6.46	1.30	394.S		99	63	331	30	4
	15	6	6.40	120	396.2		994	64	331	253	4
		7	0,40	1.20	298.4		99	64	336	350	Ц
	20	8	10,39	1.17	1399.S		<u>9</u> à	as'	330	2s/	<u> </u>
		9	0.38	1:15	401.0		99	65	331	251	<u> </u>
	35	10	0,40	1.20	402.6		99	64	376	250	Y_
		11	0.34	1:02	403.7		llon	64	325	250	4
	30	12	h28	084	405,0		100	63	325	251	4
		B1	bzs	Nº0G	4019		100	69	327	D. 4g	<u> </u>
	2C	2	0.36	20.1	408.6		100	63	1227	240	$\Box S$
		3	0.26	20.1	499,8		100	65	230	250	Ś
	40	4	0.30	1.14	411.0		100	GI	33(250	Ś
	0	5	0.40	120	412.9		lion	GN	332	250	Ś
	45	6	0.29	1.17	415.3		100	161	332	251	Ś
	~	7	036	1.60	464		100	C.a	339	250	5
	60	8	0.30	1.14	Lif.S		101	C.S.	331	60	5
	<u> </u>	9	h.31	0.96	小说之		lia (62	325	350	5
	Gς	10	h.32	0.96	Har. 4	/	llor	63	325	1360	5
		11	0.51	693	VAC		(0)	Ĝ3	386	249	Ś
	IX	12	A. 7	10:81	424.1		101	64	323	1249	15
General:	(get	(Operato	ors:	Condi	tions:	M	oisture	Gross	Tare	Net
Box No :N	MB1	I	Box :	CP	Ambier	t Temp	•	Data:	199	100	ml
Delta H@:	1.66	Р	robe: <u>N</u>	1D	Pbar		•		144	LUNA	ml
Gamma Y:	1.017	1 C	EMS: E	3A	Static I	0	:-0.4(11	100	ml
							- /-		11	10	
									5642	1220	5

Appendix I

FUEL FACTOR CALCULATION SHEET

PLANT : Pinetree Fitchburg

LOCATION : Wood Fired Boiler

DATE : 06/26/13

1000000 (3.64%H+1.53%C+0.57%S+0.14%N-0.46%O) Fd FACTOR = -----

L	FRUIDIN		
			GCV

1000000 (0.321 SCF/LB * % C) Fc FACTOR = _____ GCV

FU	JEL	5	Wood	Chips	
010	HYC	ROGEN		8.63	
010	CAF	RBON		52.07	
0/0	SUI	FUR	-	0.13	
0,0	NIJ	ROGEN		0.49	
olo	OXY	GEN		* 38.13	
G	CV	(Btu/l	b) =	8500	
CZ	ALC	JLATED	Fd	- FACTOR =	11022

1966 CALCULATED Fc - FACTOR =

-4-

Analysis Report

Sterling Analytical, Inc. West Springfield, MA 01089 Phone (413) 214-6541 Fax (413) 214-6842 email-madhu@sterlinganalytical.com

	Sample Number	39005				
Station		Combustion Comp.Asso.Inc.	Report Date 7/12/13			
	0		Work Order 13-0935			
	Contact		Source Identification			
	Contact Date Received	7/2/13	Dine Fitebburg 12.1			
	As Fired	7/1/13	Wood			
	Air Dried Moisture	≥ 30.71%				

Proximate/Ultimate Analysis						
Parameter	Date Analyzed	As Received	Dry	Air Dried	Method	
Moisture	al pennen 19 och open general den kan den kan den som en sen sen sen sen sen sen sen sen sen	44.77%		20.29%		
Ash,%	7/11/13	0.35	0.63	0.5	ASTM D-3174	
BTU/Lb	7/11/13	4711	8500	6800	ASTM D-5865	
Sulfur, %	7/11/13 Less Than	0.07	0.13	0.1	ASTM D-4239	
Carbon,%	7/11/13	28.75	52.07	41.5	ASTM D-5373	
Hydrogen,%	7/11/13	4.77	8.63	6.88	ASTM D-5373	
Nitrogen,%	7/11/13	0.27	0.49	0.39	ASTM D-5373	
Oxygen,%	7/9/13	21.08	38.18	30.43	ASTM D-3176	

Comments

Madhu Shah, Laboratory Supervisor

Date

Mass Certification - MA-00071 Conn Certification - PH-0520

ALL the information contained in this report has been reviewed for accuracy and checked against all quality control requirements outlined in each applicable method. This report may not be reproduced, except in full, without written approval from Sterling Analytica inc

Appendix J
DEFINITION OF ABBREVIATIONS

ACFM	Flowrate reported in actual cubic feet per minute.
An	Area of the nozzle, cross-sectional, in square feet.
As	Area of the stack in square feet.
BWO	Water vapor in gas stream, proportional by volume.
CC	Percent error confidence coefficient (one tailed).
Cd	Conversion calibration for concentration (PPMdv to lbs/SCF)
Cgas	Final emissions data reported by CEMS, adjusted for calibration drift. Reported as ppm dry,
	proportional by volume.
Cm	Average CEM response to initial and final span gas system calibration.
Cma	Concentration of the calibration gases.
Со	Average CEM response to initial and final zero gas system calibration.
Craw	Raw emissions data reported by the CEMS, uncorrected for calibration drift.
Cwet	Final emissions data reported by CEMS, adjusted for calibration drift and water vapor.
	Reported as ppm wet, proportional by volume.
% CO	Percent of carbon monoxide in the flue gas.
% CO2	Percent of carbon dioxide in the flue gas.
Ср	Pitot tube coefficient.
Cs	The concentration in the stack in pounds per standard cubic foot.
Cs'	The concentration in the stack in grains per standard cubic foot.
Cs' @ 12%	The concentration in the stack in grains per dry standard cubic feet corrected to 12% CO ₂ .
DELTA H	The pressure differential across orifice meter, reported in inches of H_2O .
DELTA H(ABS)	The pressure differential across orifice meter, absolute conditions in inches of mercury.
Dn (IN)	Diameter of the nozzle in inches.
DGM IN	Temperature of the dry gas meter inlet, reported in degrees Fahrenheit.
DGM OUT	Temperature of the dry gas meter outlet, reported in degrees Fahrenheit.
Ds (FT)	Diameter of the stack in feet.
DSCFH	Dry standard cubic feet per hour.
DSCFM	Dry standard cubic feet per minute.
DSCMH	Dry standard cubic meters per hour.
jana Jana Jana J. J. Cont. B. A. Sama mila bank bank	Emission rate in pounds per million Btu using F Factor of fuel burned.
	The dry gas meter reading at the end of the test.
FFACTOR	The theoretical amount of air in dry standard cubic feet (DSCF) needed to compust a million Btu's
	Worth of fuel.
	Grans per brake noisepower nour.
	Final volume of absorbing solution in impinger.
INF (INT)	The dry gas motor reading at the beginning of the test
% ISO	Variation of sampling from isokinetic conditions
	Pounds per hour
	Pounds per hour. Pounds per million British Thermal Unit
LB/SCF	Pounds per million British merinar onit.
Md (DRY)	The dry molecular weight of the flue gas in pounds per pound mole
MI	Volume in milliliters
Ma/M3	Milligrams per cubic meter
Mn	Total particulate found in sample minus the acetone residue (blank) Reported in milligrams
Ms (WET)	Wet or actual molecular weight of the flue gas in pounds per pound mole.
MW	Molecular weight
% N2	The percent of nitrogen in the flue gas.
NO. PTS	Number of traverse points.
% O2	% oxygen in the flue gas.
P BAR	Barometric pressure at test location.
PIT COEFF	Pitot tube coefficient (S Type=.84, standard=.99).
PPM	Parts per million.

360 Old Colony Road, Suite 1, Norton, MA 02766

DEFINITION OF ABBREVIATIONS

PPMdv	Parts per million - dry volume.
PPMwv	Parts per million - wet volume.
P STK	Static pressure of the stack in inches of water.
PMR	The pollutant mass rate in pounds per hour.
PS (ABS)	Absolute stack pressure in inches of mercury.
Pstd	Standard absolute pressure, (29.92 in. Hg).
Qs	The volumetric flow rate of the flue gas in dry standard cubic feet per hour.
RA	Relative accuracy.
RATA	Relative accuracy test audit.
RM	Reference Method.
Sd	Emission standard (allowable emission rate).
SQ ROOT	The square root of each velocity head measurement (Delta P).
SQRT DELTA P	The average of the square roots of the measured pressure drops.
Stack Temp	The temperature of the stack in degrees (°F) Fahrenheit.
TM (°F)	Average temperature of the dry gas meter in degrees Fahrenheit.
TM (°R)	Average temperature of the dry gas meter in degrees Rankine.
TS (°R)	The temperature of the stack in degrees Rankine.
VEL HEAD	The pressure drop measured across the pitot tubes.
VI (TOT)	The amount of water collected in the impingers in milliliters.
VM (CF)	The volume sampled through the dry gas meter in cubic feet.
VM STD	Volume sampled through the dry gas meter corrected to standard conditions.
VOC	Volatile organic compounds
VS	Velocity of the stack gas in feet per second.
VW STD	The amount of moisture collected, corrected to standard conditions.
Y	Dry gas meter calibration factor.

Pinetree Power Fitchburg, Inc. 2 Rowtier Drive Westminster, MA 01473 Telephone (978) 874-2966 Facsimile (978) 874-2968

Pinetree Power Fitchburg

via Certified Mail

Ms. Maria L'Annunziata MA DEP – Central Region 627 Main Street Worcester, MA 01608

Air Compliance Clerk US Environmental Protection Agency 5 Post Office Sq. Ste 100 Boston, MA 02109 October 11, 2013

RE: PINETREE POWER: – DEP THIRD QUARTER 2013 EMISSION REPORT – DEP THIRD QUARTER 2013 OPACITY AUDIT

- DEP THIRD QUARTER 2013 CGA
- DEP SEMI- ANNUAL MONITORING SUMMARY

Dear Ms. L'Annunziata & Sir/Madam,

In accordance with Pinetree Power's Final Operating Permit, Section 4B Table 6 Paragraph 1 (DEP) and 40 CFR Part 60 Subpart GG (EPA), enclosed please find the following emission reports for the above stated Quarterly report:

- Q3 2013 Semi-Annual Monitoring Summary
- Excess Emission Data Summary & CEMS Performance Summary
- Excess Emission Deviation Summary Report for NOx, CO, SO2, Opacity and NH3
- Source Operation Report by Quarter and Month
- CEMS Availability Report
- Failed Daily Calibration Drift Reports
- CGA & Opacity Audit

The 3rd Quarter Opacity Audit and Cylinder Gas Audits were satisfactorily performed on Unit #1 on September 27 & 30, 2013.

Please note that the Responsible Official, Mr. Michael Buckman, is fully abreast of daily operations and contents of all reports submitted. BWP Air Section Chief is the DEP representative Pinetree Power interfaces with regarding the air program.

The facility's Authorized Account Representative is Mr. Michael Buckman (<u>michael.buckman@gdfsuezna.com</u>) and the Authorized Agent is Mr. Robert K. Maggiani (<u>robert.maggiani@gdfsuezna.com</u>).

I am authorized to make this submission on behalf of the owners and operators of the source or units for which the submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the statements and information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.

Michael Buckman RO and AAR

If you have any questions or comments pertaining to the above, please be sure to contact me at the above letterhead address, on telephone number of (978) 874-2966 x3, or electronically at timothy.haley@gdfsuezna.com.

Sincerely,

10-11-13

Timothy Haley Site Administrator

Encls. (5) cc: , File.

Massachusetts Department of Environmental Protection Bureau of Waste Prevention - Business Compliance Division Semi-Annual Compliance Monitoring **Summary and Certification**

118/61	204855	X257919
SSEIS Number	FMF Facility Number	Transmittal Number
	194030	4911
Application Number	FMF R.O. Number	SIC Code(s)

Pursuant to 310 CMR 7.00 Appendix C(10)(h), the Semi-Annual Compliance Certification must be certified by the responsible official. Failure to provide accurate information in this report may result in civil and/or criminal penalties according to 310 CMR 7.01(2).

Additional information regarding the report and documentation listed below must be kept on file for at least 5 years and be made available to the Department upon request as required by 310 CMR 7.00 Appendix C(10).

Important: When filling out	Facility Information					
forms on the computer, use	Pinetree Power Fitchburg,	Inc				
only the tab key	Name					
to move your	2 Rowtier Drive (170 Fitch	burg Rd.)				
cursor - do not	Street Address					
key.	Westminster	MA	014	73	978-874	1-2966
	City	State	Zip	Code	Telephon	e Number
tab	Michael Buckman			P	lant Manager	
	Facility Contact Person			C	ontact person's title	
return	Semi-Annual Compl	iance Certificat	ion			
	Reporting Period (Provide	Inclusive Dates)	1/1/13		9/30/13	
		,	From		То	
	1. During the entire repo submit only this page.	ting period, no deviation	ons from the Operatin	g Permit requireme	nts or any other terms or	conditions occurred. If yes,
	2. During the entire repo	rting period, there were	e deviations and;			
	2a. 🛛 All deviations reported	previously	2	2b. 🗌 One or more required. At documentat	e deviation(s) were not pr tach appropriate Deviation.	reviously reported as on Report(s) and supporting

I certify that I have personally examined the foregoing and am familiar with the information contained in this document and all attachments and that, based on my inquiry of those individual immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including possible fines and imprisonment. I am aware that additional information may be requested.

Michael Buckman	Plant Manager		
Name of Responsible Official	Title		1/
Call to the Area and the	978-874-2966	10-11-2013	10/11/2013
Signature of Responsible Official	Phone Number	Date	

By Signing This Form You are Certifying to Page 1 Through Page 5

Facility Name: __Pinetree Power Fitchburg Inc._____ Facility Address: ______ SSEIS No.: _____ Transmittal No._X252275 Date of Issuance _____

Air Operating Permit Semi-Annual Monitoring Summary

Emission Unit Identification Table 1. EU No. Description of Emission Unit EU Design Capacity Pollution Control Device 1 Multi-fuel fired electric generator 260 MMBtu/hr Primary: Dry mechanical dust collector (wood, natural gas, landfill gas & paper) Secondary: Positive pressure Bag House

	Emission Limits/Restrictions Table 3.																			
EU No.	Fuel/Raw Material	Pollutant	Restrictions	Applicable Regulation and/or Approval No.	Devia	ation?	Devi Previ Repo	ation iously orted?	Date(s) Previously Reported	Retur Comp	ned to liance?	Proposed Date of Return to	Cc Act	Corrective Action Plan Filed?		Correctiv Action Pla Filed?		Corrective Action Plan Filed?		Comments (Including Date of Return to Compliance)
					Y	N	Y	N		Y	N	Compliance	Y	N	NR*					
1	Wood PDSF Landfill Gas Natural Gas	РМ	0.016 lb/mmbtu 4.16 lb/hr 18.2 tpy	W21004212 A		N														
1	Wood PDSF Landfill Gas Natural Gas	SO2	0.03 lb/mmbtu 7.8 lb/hr 34.2 tpy	W21004212 A		N														
1	Wood PDSF Landfill Gas Natural Gas	NOx	0.175 lb/mmbtu 45.5 lb/hr 199.3 tpy	W21004212 A	-	N														
1	Wood PDSF Landfill Gas Natural Gas	VOC	0.03 lb/mmbtu 7.8 lb/hr 34.2 tpy	W21004212 A		N														
1	Wood PDSF Landfill Gas Natural Gas	со	0.30 lb/mmbtu 52.0 lb/hr 227.8 tpy	W21004212 A		N														

Facility Address: ______ SSEIS No.: _____ Transmittal No._X252275_ Date of Issuance _____ Air Operating Permit Semi-Annual Monitoring Summary

			T	Emission Lim	its/I	Rest	rictio	ons	Table 3. c	conti	nuec							
EU No.	Fuel/Raw Material	Pollutant	Restrictions	Applicable Regulation and/or Approval No.	Devia	ation?	Devi Previ Repo	ation iously orted?	Date(s) Previously Reported	Retur Comp	ned to liance?	Proposed Date of Return to	Co Act I	Corrective Action Plan Filed?		Corrective Action Plan Filed?		Comments (Including Date of Return to Compliance)
					Y	N	Y	N		Y	N	Compliance	Y	N	NR*			
1	Wood PDSF Landfill Gas Natural Gas	PB	0.0002 lb/mmbtu 0.05 lb/hr 0.22 tpy	W21004212 A		N												
1	Wood PDSF Landfill Gas Natural Gas	NH3	2.04 lb/hr (10 ppmvd) 8.9 tpy	W21004212 A	Y Y		Y Y	2	7/6/13 7/7/13	Y Y						7/6/13 SCR Dampers leaking by. 7/7/13 SCR Urea nozzle failed open.		
1	PDSF Landfill Gas Natural Gas	Emissions	20%	W21004212 A	Y Y Y Y		Y Y Y Y		1/4/13 1/16/13 1/17/13 3/10/13	Y Y Y Y						1/4/13 Bag failure replaced 11 bags. 1/16/13 New filter bags first cleaning. 1/17/13 Bag failure during shutdown. 3/10/13 Spike when		
					Y Y		Y		3/14/13 7/1/13	Y Y	2					sootblowing 3/14/13 Sootblowing bypass damper ajar. 7/1/13 SCR flow change		
					Y		Y		7/7/13	Y						Opacity spike 7/7/13 ID fan trip Bag failure. Opacity spike 7/19/13 SCB flow		
		. x			Y		Y		7/22/13	Y						change Opacity spike 7/22/13 SCR flow		
					Y		Y		7/23/13	Y						change. Opacity spike 7/23/13 SCR flow		
					Y		Y		7/26/13	Y						7/26/13 Opacity spike on start up		
					1	* Not	t rea	uire	0/0/13	Ŷ						o/o/13 SCR flow change. Opacity spike		

2nd half 2013 s-a permit dev report(3rd QTR)

	Ма	onito	ring	/Tes	ting	Table 4.							
EU No.	No. Monitoring/Testing Requirements	Devia	ation?	Devi Prev Repo	ation iously orted?	Date(s) Previously Reported	Returned to Compliance		Proposed Date of Return to	Coi Acti F	rrective ion Plan Filed?		Comments (Including Date of Return to Compliance)
		Y	N	Y	N		Y	N	Compliance	Υ	N	NR	
1	Continuous monitoring of NH3, NOx, SO2 & CO	Y		Y		2/9/13	Y						2/9/13 Air line to CEM system froze
1	Continuous monitoring of OPACITY		N										
1	Monitoring and Testing Requirements 2 - 12 of table 4 of operating permit.		N										

Record Keeping Table 5.													
EU No.	Record Keeping Requirements	Devia	Deviation?		ation ously orted?	Date(s) Previously Reported	Retur Comp	ned to liance?	Proposed Date of Return to	Co Ac	ion ion Filec	tive Plan 1?	Comments (Including Date of Return to Compliance)
		Y	N	Y	N		Y	N	Compliance	Y	N	NR	
1	The terms and conditions presented in Table 5 : 1 - 15		N										

Facility Name: __Pinetree Power Fitchburg Inc._____ Facility Address: ______ SSEIS No.: _____ Transmittal No._X252275_ Date of Issuance ______ Air Operating Permit Semi-Annual Monitoring Summary

Reporting Table 6.													
EU No.	Reporting Requirements	Devia	ation?	Devi Prev Repo	ation iously orted?	Date(s) Previously Reported	Retur Comp	ned to liance?	Proposed Date of Return to	Co Act	orrection Filec	tive Plan 1?	Comments (Including Date of Return to Compliance)
		Y	N	Y	N		Y	N	Compliance	Y	N	NR	
1	The terms and conditions presented in Table 6 : 1 - 8	Y		Y		3/10/13	Y						3/11/13 Failure to report deviation within 4 hours.

	Spec	ial 1	ſerm	is an	d Co	onditions	;						
EU No.	U No. Special Term/Conditions		Deviation?		ation ously rted?	Date(s) Previously Reported	Returned to Compliance?		Proposed Date of Return to	Co Act F	rrec ion l Filec	tive Plan I?	Comments (Including Date of Return to Compliance)
		Y	N	Y	N	rioponiou	Y	N	Compliance	Y	N	NR	
1	A : GENERAL		Ν										·····
1	B: Air Pollution Controls		Ν										
1	C: LANDFILL GAS		N										
1	D: ASH		N										
1	E: Paper Derived Supplemental Fuel (PSDF)		N										
1	F: NOISE REQUIREMENTS		Ν										
1	G: RATA / CGA REPORTING REQUIREMENTS		N										
	Alterr	nativ	re Ol	perat	ting	Scenario	S						
EU No.	Alternative Operating Scenario	Devia	ation?	Devi Previ Repo	ation iously orted?	Date(s) Previously Reported	Retur Comp	ned to liance?	Proposed Date of Return to	Cc Act	orrection Filec	ctive Plan d?	Comments (Including Date of Return to Compliance)
		Y	N	Y	N		Y	N	Compliance	Y	Ν	NR	· · · · · · · · · · · · · · · · · · ·
1	N/A												

2nd half 2013 s-a permit dev report(3rd QTR)

BWP AQ OP Semi-Annual Monitoring Summary and Certification

.

Facility Address: SSEIS No.: Transmittal No._X2522 Air Operating Permit Semi-Annual Monitoring Summary

	Emissions Trading													
EU No.	o. Emissions Trading	Devia	Deviation?		ation iously orted?	Date(s) Previously Reported	Retur Comp	ned to liance?	Proposed Date of Return to	Co Act F	rrec ion l -iled	tive Plan I?	Comments (Including Date of Return to Compliance)	
			N	Y	N		Y	N	Compliance	Y	N	NR		
1	N/A													

Massachusetts Department of Environmental Protection Bureau of Waste Prevention – Business Compliance Division Operating Permit Cross Reference Form

EU No.(s)	Deviation Date(s)	Type of Deviation	Return to Compliance Plan Date or Date Returned to Compliance
EU #1	01-04-2013	OPACITY >10%	01-04-2013 - X254157
EU #1	01-16-2013	OPACITY >20%	01-16-2013 - X254433
EU #1	01-17-2013	Opacity	<u>01-17-2013 - X254438</u>
EU #1	02-09-2013	CEM -OOS	02-09-2013 - X254682
EU #1	03-10-2013	Opacity > 10%	<u>03-10-2013 - X255161</u>
EU #1	03-14-2013	Opacity > 20%	03-14-2013 - X255215

Massachusetts Department of Environmental Protection Bureau of Waste Prevention – Business Compliance Division Operating Permit Cross Reference Form

EU No.(s)	Deviation Date(s)	Type of Deviation	Return to Compliance Plan Date or Date Returned to Compliance
EU #1	07-01-2013	Opacity > 20%	07-01-2013 - X256579
EU #1	07-06-2013	NH3 > 20ppm	07-06-2013 - X256648
EU #1	07-07-2013	Opacity > 20%	07-07-2013-X256649
EU #1	07-07-2013	9-2 min average	07-07-2013-X256649
EU #1	07-07-2013	NH3 > 20ppm	07-07-2013-X256649
EU#1	07-19-2013	Opacity>20%	07-19-2013-X256913
EU#1	07-22-2013	Opacity>20%	07-22-2013-X256933
EU#1	07-23-2013	Opacity>20%	07-23-2013-X256958
EU#1	07-26-2013	Opacity>20%	07-26-2013-X257015
EU#1	08-08-2013	Opacity>20%	08-08-2013-X257162

EXCESS EMISSION AND CONTINUOUS EMISSION MONITOR REPORT SUMMARY PAGE

Company na QUARTER : TOTAL FACI	me : PINETREE POWER - FITCHBURG L.P. Continuous emission monitor for : NOX X CO	
I.	EXCESS EMISSION SUMMERY MARK EITHER PART A. OR PART B.	
	A. There were excess emission periods as follows : 1. Number of separate excess emission periods :	0
	2. Total hours of all excess emission periods :	0
	<pre>For each excess emission period, fill out one of the attached Excess Emission Event Explanations. XX B. There were no periods of excess emissions indic by the Continuous Emissions Monitor system this quarter.</pre>	ated
II.	CONTINUOUS EMISSION MONITOR SUMMERY	
	MARK EITHER PART A. OR PART B.	
	A. There were CEM inoperative periods as follows :	
	1. Number of periods when CEM was inoperative (except for zero and span checks)0	r
	2. Total number of hours that CEM was inoperative :	0
	For each period that the CEM was inoperative, fill out of the attached CEM Inoperative Period Explanations.	one of
	XX B. There were no periods when the CEM was inoperat during this quarter	ive

EXCESS EMISSION AND CONTINUOUS EMISSION MONITOR REPORT SUMMARY PAGE

Company na	ame : PINETREE POWER - FITCHBURG L.P. Continuous emission monitor for :	
î.	NOxCO X SO2OpacityNH3	
QUARTER :	<u>3rd</u> YEAR : 2013	
TOTAL FACI	LITY OPERATING HOURS THIS QUARTER : 2014	
I.	EXCESS EMISSION SUMMERY	
	MARK EITHER PART A. OR PART B.	
	A. There were excess emission periods as follows :	
	1. Number of separate excess emission periods :0	
	2. Total hours of all excess emission periods : 0	
	For each excess emission period, fill out one of the attached Excess Emission Event Explanations.	
	XXB. There were no periods of excess emissions indicated by the Continuous Emissions Monitor system this quarter.	
II.	CONTINUOUS EMISSION MONITOR SUMMERY	
	MARK EITHER PART A. OR PART B.	
	A. There were CEM inoperative periods as follows :	
	1. Number of periods when CEM was inoperative (except for zero and span checks)0	
	2. Total number of hours that CEM was inoperative :	0
	For each period that the CEM was inoperative, fill out one of the attached CEM Inoperative Period Explanations.	
	XX B. There were no periods when the CEM was inoperative during this quarter	

EXCESS EMISSION AND CONTINUOUS EMISSION MONITOR REPORT SUMMARY PAGE

Company na	ame : PINETREE POWER - FITCHBURG L.P.	
	Continuous emission monitor for :	
	NOx CO SO2 X Opacity NH3	
QUARTER :	<u>3rd</u> YEAR : 2013	
TOTAL FAC	ILITY OPERATING HOURS THIS QUARTER : 2014	
I.	EXCESS EMISSION SUMMERY	
	MARK EITHER PART A. OR PART B.	
	A. There were excess emission periods as follows :	
	1. Number of separate excess emission periods :	0
	2. Total hours of all excess emission periods :	0
	For each excess emission period, fill out one of the attached Excess Emission Event Explanations.	
	XX B. There were no periods of excess emissions indicated by the Continuous Emissions Monitor system this quarter.	1
II.	CONTINUOUS EMISSION MONITOR SUMMERY	
	MARK EITHER PART A. OR PART B.	
	A. There were CEM inoperative periods as follows :	
	1. Number of periods when CEM was inoperative (except for zero and span checks) 0	
	2. Total number of hours that CEM was inoperative :	0
	For each period that the CEM was inoperative, fill out one of the attached CEM Inoperative Period Explanations.	of
	XXB. There were no periods when the CEM was inoperative during this quarter	
·····		

EXCESS EMISSION AND CONTINUOUS EMISSION MONITOR REPORT SUMMARY PAGE

Company na	ame : PINETREE POWER - FITCHBURG L.P.	
	Continuous emission monitor for : NOxCOSO2Opacity XNH3	
QUARTER :	3rd YEAR : 2013	
TOTAL FACI	LITY OPERATING HOURS THIS QUARTER :2014	
I.	EXCESS EMISSION SUMMERY	
	MARK EITHER PART A. OR PART B.	
	XX A. There were excess emission periods as follows :	
	1. Number of separate excess emission periods :	8
	2. Total hours of all excess emission periods :	0.3
	For each excess emission period, fill out one of the attached Excess Emission Event Explanations.	
	B. There were no periods of excess emissions indicated by the Continuous Emissions Monitor system this quarter.	
II.	CONTINUOUS EMISSION MONITOR SUMMERY	
	MARK EITHER PART A. OR PART B.	
	A. There were CEM inoperative periods as follows :	
	1. Number of periods when CEM was inoperative (except for zero and span checks)0	
	2. Total number of hours that CEM was inoperative :	0
	For each period that the CEM was inoperative, fill out one of the attached CEM Inoperative Period Explanations.	
	XXB. There were no periods when the CEM was inoperative during this quarter	

EXCESS EMISSION AND CONTINUOUS EMISSION MONITOR REPORT SUMMARY PAGE

Company na	ame : PINETREE POWER - FITCHBURG L.P.
	Continuous emission monitor for :
	NOx CO SO2 Opacity NH3 X
QUARTER :	3rd YEAR : 2013
TOTAL FACI	LITY OPERATING HOURS THIS QUARTER : 2014
I.	EXCESS EMISSION SUMMERY
	MARK EITHER PART A. OR PART B.
	XX A. There were excess emission periods as follows :
	1. Number of separate excess emission periods :2
	2. Total hours of all excess emission periods :6
	For each excess emission period, fill out one of the attached Excess Emission Event Explanations.
	B. There were no periods of excess emissions indicated by the Continuous Emissions Monitor system this quarter.
II.	CONTINUOUS EMISSION MONITOR SUMMERY
	MARK EITHER PART A. OR PART B.
	A. There were CEM inoperative periods as follows :
	1. Number of periods when CEM was inoperative (except for zero and span checks)0
	2. Total number of hours that CEM was inoperative :0
	For each period that the CEM was inoperative, fill out one of the attached CEM Inoperative Period Explanations.
	XX B. There were no periods when the CEM was inoperative during this quarter

					P	INETI	REE P	OWEI	R FIT	CHB	URG F	EMIS	SION	REPOI	RT (d	aily av	erages	5)									
	Ī				NH3				NOX	NOX				CO	<u>``</u>	<u> </u>		Ć I	SO2	SO2		WOOD	WOOD	NOX		i T	
	HOURS	NH3	NH3	NH3	365	NOX	NOX	NOX	30	365	СО	со	CO	365	SO2	SO2	SO2	SO2	30 DAY	365	STACK	INTO	BURN	QTR	FU	EL	OPACITY
	ON	PPM	LB/HR	LB/MM	ROLL	PPM	LB/HR	LB/MM	DAY	ROLL	PPM	LB/HR	LB/MM	ROLL	PPM	LB/HR	LB/MM	TON	TOTAL	ROLL	02	PLANT	LAST	AVE.	WL	PN	AVE.
DATE	LINE			BTU	TONS			BTU	AVE.	TONS			BTU	TONS			BTU	DAY	TONS	TONS		DAY	365	TO DATE			
1-Jul-13	24	5.4	0.9	0.003	0.86	31.2	17.1	0.064	0.043	83.59	203,900	58.700	0.240	105.249	0.200	0.200	0.001	0.00	0.03	0.42	5.60	814.5	77422.9	0.064	X O	0 0	0.2
2-Jul-13	24	6.2	1	0.004	0.87	30.3	16.8	0.062	0.045	83.64	216,600	53.000	0.264	105.655	0.200	0.200	0.001	0.00	0.03	0.42	5.40	804.3	77700.1	0.063	X O	0 0	0.1
3-Jul-13	24	5.7	0.9	0.003	0.88	36	19.7	0.073	0.048	83.34	203,900	61.700	0.250	105.978	0.300	0.200	0.001	0.00	0.03	0.43	5.40	526.9	77552.9	0.066	X O	0 0	0.1
4-Jul-13	24	12.9	2.2	0.008	0.90	35.5	20.3	0.072	0.050	83.04	168.700	57.200	0.209	106.174	0.300	0.200	0.001	0.00	0.03	0.43	5.40	0.0	77552.9	0.068	X 0	0 0	0.2
5-Jui-13	24	11.9	2.1	0.007	0.93	36.4	21.2	0.072	0.053	82.78	163.400	58,500	0.199	106.530	1.400	1.100	0.004	0.01	0.05	0.43	5.20	675.0	77471.1	0.069	X 0	0 0	0.2
6-Jul-13	24	14.2	2.5	0.008	0.95	42.5	25.3	0.086	0.055	82.90	174.200	58,300	0.212	107.093	2.200	1.900	0.006	0.02	0.07	0.43	5.30	0.0	76698.8	0.072	X 0	0 0	0.3
7-Jul-13	14.3	11.7	2	0.007	0.98	45.7	26.6	0.093	0.059	82.71	199.700	66.300	0.245	107.467	0.700	0.500	0.002	0.01	0.07	0.43	6.20	0.0	76698.8	0.075	X O	0 0	0.7
8-Jul-13	0	0	0	0.000	0.97	0	0.0	0.000	0.061	82.38	0.000	0.000	0.000	107.081	0.000	0.000	0.000	0.00	0.07	0.43	0.00	535.9	77234.7		0 0	0 0	0.0
9-Jul-13	0	0	0	0.000	0.97	0	0.0	0.000	0.058	82.09	0.000	0.000	0.000	106.803	0.000	0.000	0.000	0.00	0.07	0.43	0.00	35.4	76646.8		0 0	0 0	0.0
10-Jul-13	16.4	5.1	0.7	0.026	0.98	34.1	15.9	0.114	0.062	81.95	254.000	57.800	0.238	107.157	0.200	0.200	0.001	0.00	0.08	0.43	9.20	418.2	76230.4	0.080	X 0	0 X	0.0
11-Jul-13	24	5.8	0.9	0.003	0.98	52	25.9	0.100	0.059	81.88	219.500	63.100	0.258	107.443	0.500	0.300	0.001	0.00	0.08	0.43	4.80	705.4	76174.9	0.082	X 0	0 0	0.1
12-Jul-13	24	8	1.2	0.004	0.99	37.6	19.6	0.068	0.057	81.52	208.000	61.900	0.229	107.550	0.000	0.000	0.000	0.00	0.07	0.43	4.00	985.2	76615.7	0.080	X 0	0 0	0.1
13-Jul-13	24	8.5	1.3	0.005	1.00	50.7	26.7	0.092	0.057	81.37	214.200	68.400	0.236	107.922	0.200	0.200	0.000	0.00	0.08	0.43	4.00	0.0	76210.6	0.081	X 0	0 0	0.2
14-Jul-13	24	5.2	0.7	0.003	1.00	77.6	37.4	0.139	0.062	81.33	208.400	61.200	0.227	108.097	0.700	0.500	0.002	0.01	0.08	0.43	3.90	0.0	76210.6	0.086	X 0	0 0	0.1
15-Jul-13	24	8	1.2	0.004	1.01	50.8	25.2	0.089	0.065	81.15	216.500	63.900	0.231	108.532	0.600	0.400	0.001	0.00	0.09	0.43	3.60	684.8	76895.4	0.086	X O	0 0	0.2
16-Jul-13	24	8.8	1.3	0.004	1.02	28.7	14.1	0.050	0.067	81.09	249.700	63.400	0.263	108.883	0.800	0.500	0.002	0.01	0.09	0.43	3.60	764.5	77003.4	0.084	XO	0 0	0.2
17-Jul-13	24	8.9	1.3	0.005	1.03	34.5	17.0	0.060	0.069	80.84	191,600	57.200	0.202	109.200	0.800	0.600	0.002	0.01	0.10	0.43	3,50	990.2	77384.6	0.082	XO	0 0	0.3
18-Jul-13	24	9.2	1.4	0.005	1.05	35.9	10.1	0.062	0.071	80.57	215.200	56.100	0.227	109.955	0.900	0.600	0.002	0.01	0.11	0.43	3.30	990.9	77765.1	0.081	X U	0 0	0.3
19-Jul-13	24	7.2	0.3	0.004	1.05	11.5	18.5	0.065	0.073	70.25	101.000	21 600	0.193	110.192	0.800	0.500	0.002	0.01	0.11	0.43	3,40	023.7	780207.4	0.000	X 0	0 0	0.4
20-301-13	2.00	3.9	0,3	0.045	1.05	28.6	19.7	0.067	0.070	79.70	210,000	62,800	0.027	110.034	0.000	0.100	0.004	0.00	0.17	0.43	2 70	0.0	78039.9	0.079	Ŷ O		0.0
21-Jul-13	24	0.9	4	0.004	1.05	42.5	20.2	0.000	0.070	70.12	219.000	61 600	0.233	110.244	0.000	0.400	0.001	0.00	0.12	0.45	3.40	801.7	78841.6	0.079	X O	0 0	0.1
22-50-13	23.5	9.4	1 2	0.004	1.00	28.8	13.0	0.070	0.001	79 17	253 300	66,800	0.211	111 200	0.000	0.400	0.002	0.00	0.12	0.44	5.60	538.8	78541.6	0.077	X O	0 0	0.2
24- Jul-13	21.00	8.8	13	0.004	1.00	30.3	15.3	0.052	0.080	79 13	197 700	60 700	0 207	111 645	0.600	0.500	0.001	0.01	0.13	0.44	3.40	692.7	78521.5	0.076	X O	0 X	0.2
25-Jul-13	24	8.5	1.3	0.004	1.11	36.9	19.2	0.063	0.080	79.29	196,700	61.600	0.205	112,194	0.500	0.400	0.001	0.00	0.13	0.44	3.30	563.4	79084.8	0.076	X O	0 0	0.3
26-Jul-13	10.7	7.5	0.7	0.006	1.11	21.4	10.6	0.053	0.079	78.91	211,500	46,400	0,123	112.355	0,300	0.200	0.001	0.00	0.13	0.44	12.30	422.1	79506.9	0.075	X O	οx	0.1
27-Jul-13	24	7.5	1.1	0.004	1.12	46	23.0	0.078	0.078	78.66	226,100	67.200	0.231	112.605	0,700	0,500	0.002	0.01	0.14	0.44	3.10	0.0	79506.9	0.075	X O	0 0	0.3
28-Jul-13	24	9	1.3	0.005	1.13	37.4	18.6	0.065	0.077	78.33	190.000	57.600	0.199	112.734	0.700	0.500	0.002	0.01	0.14	0.44	3.40	0.0	79506.9	0.074	X O	0 0	0.2
29-Jul-13	22.48	8.3	1.2	0.004	1.14	36.5	18.6	0.063	0.075	78.00	177.300	52.700	0.183	112.814	0.700	0.500	0.002	0.01	0.15	0.44	4.10	706.5	80213.4	0.074	X O	0 X	0.2
30-Jul-13	24	7.1	1	0.005	1.14	44.7	21.8	0.084	0.074	77.72	207.400	60.800	0.205	112.996	0.700	0.400	0.002	0.00	0.15	0.44	4.70	936.4	80199.7	0.074	X O	0 0	0.2
31-Jul-13	24	8.4	1.2	0.004	1.15	36.6	18.4	0.064	0.074	77.38	224.100	62.900	0.237	113.289	0.700	0.500	0.002	0.01	0.15	0.44	3.50	0.0	79417.8	0.074	X 0	0 X	0.2
AVG./TOTA	639.08	7.59	1.14	0.01	1.02	35.76	18.32	0.069	0:07	80.75	194.08	55.62	2 0.20	109.22	0.57	0.42	0.00	0.15	31	31	31	31	77841.9	0.076			
			.101 \	,	YTD							EMI	SSIO	V LIM	TS												
TOTAL	TONS N	нз	0.40	'n	0.79				Pollutant		PPMV		#/MMBTI	T	Tons	Averaging	Period										
TOTAL		115 O.V.	0.40	-					Tonucan		TTNIV		#/141101151		10115	Averaging	i unou	=									
TOTAL	TONS N	ΟX	6.47	,	37.78				SO2				0.10			3 Hr Arithi	matic										
TOTAL	TONS C	0	19.35	5	62.50										2.90	30 Day Ro	olling										
TOTAL	TONS S	02	0.15	5	0.37				со				0.20			24 Hr Arit	hmatic	0 .30 - \$	Startup & S	hutdown a	& Load Swin	ngs					
HOURS	ONLIN	E	630	1	2164 76				NOv				0.175			30 Day ro	llina										
10000	ON LIN			•	2.04.70								00			011.0-10											

					P	INETI	REE P	OWEI	R FIT	CHB	URG F	EMIS	SION	REPOI	RT (d	aily av	erages	5)									
	Ī				NH3				NOX	NOX				CO	<u>``</u>	<u> </u>		Ć I	SO2	SO2		WOOD	WOOD	NOX		i T	
	HOURS	NH3	NH3	NH3	365	NOX	NOX	NOX	30	365	СО	со	CO	365	SO2	SO2	SO2	SO2	30 DAY	365	STACK	INTO	BURN	QTR	FU	EL	OPACITY
	ON	PPM	LB/HR	LB/MM	ROLL	PPM	LB/HR	LB/MM	DAY	ROLL	PPM	LB/HR	LB/MM	ROLL	PPM	LB/HR	LB/MM	TON	TOTAL	ROLL	02	PLANT	LAST	AVE.	WL	PN	AVE.
DATE	LINE			BTU	TONS			BTU	AVE.	TONS			BTU	TONS			BTU	DAY	TONS	TONS		DAY	365	TO DATE			
1-Jul-13	24	5.4	0.9	0.003	0.86	31.2	17.1	0.064	0.043	83.59	203,900	58.700	0.240	105.249	0.200	0.200	0.001	0.00	0.03	0.42	5.60	814.5	77422.9	0.064	X O	0 0	0.2
2-Jul-13	24	6.2	1	0.004	0.87	30.3	16.8	0.062	0.045	83.64	216,600	53.000	0.264	105.655	0.200	0.200	0.001	0.00	0.03	0.42	5.40	804.3	77700.1	0.063	X O	0 0	0.1
3-Jul-13	24	5.7	0.9	0.003	0.88	36	19.7	0.073	0.048	83.34	203,900	61.700	0.250	105.978	0.300	0.200	0.001	0.00	0.03	0.43	5.40	526.9	77552.9	0.066	X O	0 0	0.1
4-Jul-13	24	12.9	2.2	0.008	0.90	35.5	20.3	0.072	0.050	83.04	168.700	57.200	0.209	106.174	0.300	0.200	0.001	0.00	0.03	0.43	5.40	0.0	77552.9	0.068	X 0	0 0	0.2
5-Jui-13	24	11.9	2.1	0.007	0.93	36.4	21.2	0.072	0.053	82.78	163.400	58,500	0.199	106.530	1.400	1.100	0.004	0.01	0.05	0.43	5.20	675.0	77471.1	0.069	X 0	0 0	0.2
6-Jul-13	24	14.2	2.5	0.008	0.95	42.5	25.3	0.086	0.055	82.90	174.200	58,300	0.212	107.093	2.200	1.900	0.006	0.02	0.07	0.43	5.30	0.0	76698.8	0.072	X 0	0 0	0.3
7-Jul-13	14.3	11.7	2	0.007	0.98	45.7	26.6	0.093	0.059	82.71	199.700	66.300	0.245	107.467	0.700	0.500	0.002	0.01	0.07	0.43	6.20	0.0	76698.8	0.075	X O	0 0	0.7
8-Jul-13	0	0	0	0.000	0.97	0	0.0	0.000	0.061	82.38	0.000	0.000	0.000	107.081	0.000	0.000	0.000	0.00	0.07	0.43	0.00	535.9	77234.7		0 0	0 0	0.0
9-Jul-13	0	0	0	0.000	0.97	0	0.0	0.000	0.058	82.09	0.000	0.000	0.000	106.803	0.000	0.000	0.000	0.00	0.07	0.43	0.00	35.4	76646.8		0 0	0 0	0.0
10-Jul-13	16.4	5.1	0.7	0.026	0.98	34.1	15.9	0.114	0.062	81.95	254.000	57.800	0.238	107.157	0.200	0.200	0.001	0.00	0.08	0.43	9.20	418.2	76230.4	0.080	X 0	0 X	0.0
11-Jul-13	24	5.8	0.9	0.003	0.98	52	25.9	0.100	0.059	81.88	219.500	63.100	0.258	107.443	0.500	0.300	0.001	0.00	0.08	0.43	4.80	705.4	76174.9	0.082	X 0	0 0	0.1
12-Jul-13	24	8	1.2	0.004	0.99	37.6	19.6	0.068	0.057	81.52	208.000	61.900	0.229	107.550	0.000	0.000	0.000	0.00	0.07	0.43	4.00	985.2	76615.7	0.080	X 0	0 0	0.1
13-Jul-13	24	8.5	1.3	0.005	1.00	50.7	26.7	0.092	0.057	81.37	214.200	68.400	0.236	107.922	0.200	0.200	0.000	0.00	0.08	0.43	4.00	0.0	76210.6	0.081	X 0	0 0	0.2
14-Jul-13	24	5.2	0.7	0.003	1.00	77.6	37.4	0.139	0.062	81.33	208.400	61.200	0.227	108.097	0.700	0.500	0.002	0.01	0.08	0.43	3.90	0.0	76210.6	0.086	X 0	0 0	0.1
15-Jul-13	24	8	1.2	0.004	1.01	50.8	25.2	0.089	0.065	81.15	216.500	63.900	0.231	108.532	0.600	0.400	0.001	0.00	0.09	0.43	3.60	684.8	76895.4	0.086	X O	0 0	0.2
16-Jul-13	24	8.8	1.3	0.004	1.02	28.7	14.1	0.050	0.067	81.09	249.700	63.400	0.263	108.883	0.800	0.500	0.002	0.01	0.09	0.43	3.60	764.5	77003.4	0.084	XO	0 0	0.2
17-Jul-13	24	8.9	1.3	0.005	1.03	34.5	17.0	0.060	0.069	80.84	191,600	57.200	0.202	109.200	0.800	0.600	0.002	0.01	0.10	0.43	3,50	990.2	77384.6	0.082	XO	0 0	0.3
18-Jul-13	24	9.2	1.4	0.005	1.05	35.9	10.1	0.062	0.071	80.57	215.200	56.100	0.227	109.955	0.900	0.600	0.002	0.01	0.11	0.43	3.30	990.9	77765.1	0.081	X U	0 0	0.3
19-Jul-13	24	7.2	0.3	0.004	1.05	11.5	18.5	0.065	0.073	70.25	101 000	21 600	0.193	110.192	0.800	0.500	0.002	0.01	0.11	0.43	3,40	023.7	780207.4	0.000	X 0	0 0	0.4
20-301-13	2.00	3.9	0,3	0.045	1.05	28.6	19.7	0.067	0.070	79.70	210,000	62,800	0.027	110.034	0.000	0.100	0.004	0.00	0.17	0.43	2 70	0.0	78039.9	0.079	Ŷ O		0.0
21-Jul-13	24	0.9	4	0.004	1.05	42.5	20.2	0.000	0.070	70.12	219.000	61 600	0.233	110.244	0.000	0.400	0.001	0.00	0.12	0.45	3.40	801.7	78841.6	0.079	X O	0 0	0.1
22-50-13	23.5	9.4	12	0.004	1.00	28.8	13.0	0.070	0.001	79 17	253 300	66,800	0.211	111 200	0.000	0.400	0.002	0.00	0.12	0.44	5.60	538.8	78541.6	0.077	XO	0 0	0.2
24- Jul-13	21.00	8.8	13	0.004	1.00	30.3	15.3	0.052	0.080	79.13	197 700	60.700	0 207	111 645	0.600	0.500	0.001	0.01	0.13	0.44	3.40	692.7	78521.5	0.076	X O	0 X	0.2
25-Jul-13	24	8.5	1.3	0.004	1.11	36.9	19.2	0.063	0.080	79.29	196,700	61.600	0.205	112,194	0.500	0.400	0.001	0.00	0.13	0.44	3.30	563.4	79084.8	0.076	X O	0 0	0.3
26-Jul-13	10.7	7.5	0.7	0.006	1.11	21.4	10.6	0.053	0.079	78.91	211,500	46,400	0,123	112.355	0,300	0.200	0.001	0.00	0.13	0.44	12.30	422.1	79506.9	0.075	X O	οx	0.1
27-Jul-13	24	7.5	1.1	0.004	1.12	46	23.0	0.078	0.078	78.66	226,100	67.200	0.231	112.605	0,700	0,500	0.002	0.01	0.14	0.44	3.10	0.0	79506.9	0.075	X O	0 0	0.3
28-Jul-13	24	9	1.3	0.005	1.13	37.4	18.6	0.065	0.077	78.33	190.000	57.600	0.199	112.734	0.700	0.500	0.002	0.01	0.14	0.44	3.40	0.0	79506.9	0.074	X O	0 0	0.2
29-Jul-13	22.48	8.3	1.2	0.004	1.14	36.5	18.6	0.063	0.075	78.00	177.300	52.700	0.183	112.814	0.700	0.500	0.002	0.01	0.15	0.44	4.10	706.5	80213.4	0.074	X O	0 X	0.2
30-Jul-13	24	7.1	1	0.005	1.14	44.7	21.8	0.084	0.074	77.72	207.400	60.800	0.205	112.996	0.700	0.400	0.002	0.00	0.15	0.44	4.70	936.4	80199.7	0.074	X O	0 0	0.2
31-Jul-13	24	8.4	1.2	0.004	1.15	36.6	18.4	0.064	0.074	77.38	224.100	62.900	0.237	113.289	0.700	0.500	0.002	0.01	0.15	0.44	3.50	0.0	79417.8	0.074	X 0	0 X	0.2
AVG./TOTA	639.08	7.59	1.14	0.01	1.02	35.76	18.32	0.069	0:07	80.75	194.08	55.62	2 0.20	109.22	0.57	0.42	0.00	0.15	31	31	31	31	77841.9	0.076			
			.101 \	,	YTD							EMI	SSIO	V LIM	TS												
TOTAL	TONS N	нз	0.40	'n	0.79				Pollutant		PPMV		#/MMBTI	T	Tons	Averaging	Period										
TOTAL		11 5	0.40	-					Tonucan		TTNIV		#/141101151		1005	Averaging	i unou	=									
TOTAL	TONS N	ΟX	6.47	,	37.78				SO2				0.10			3 Hr Arithi	matic										
TOTAL	TONS C	0	19.35	5	62.50										2.90	30 Day Ro	olling										
TOTAL	TONS S	02	0.15	5	0.37				со				0.20			24 Hr Arit	hmatic	0 .30 - \$	Startup & S	hutdown a	& Load Swin	ngs					
HOURS	ONLIN	E	630	1	2164 76				NOv				0.175			30 Day ro	llina										
10000	OUT DIT			•	2.04.70								00			011.0-10											

					PI	NETF	REE PO	OWEI	R FIT	CHB	URG E	MIS	SION	REPOF	RT (d	aily av	erages	s)									
					NH3				NOX	NOX				CO					SO2	SO2		WOOD	WOOD	NOX			
	HOURS	NH3	NH3	NH3	365	NOX	NOX	NOX	30	365	CO	CO	СО	365	SO2	SO2	SO2	SO2	30 DAY	365	STACK	INTO	BURN	QTR	FUE	LC	PACITY
	ON	PPM	LB/HR	LB/MM	ROLL	PPM	LB/HR	LB/MM	DAY	ROLL	PPM	LB/HR	LB/MM	ROLL	PPM	LB/HR	LB/MM	TON	TOTAL	ROLL	02	PLANT	LAST	AVE.	WLP	N	AVE.
DATE	LINE	Aller an ease Survey o		BTU	TONS	<u></u>]		BTU	AVE.	TONS			BTU	TONS			BTU	DAY	TONS	TONS		DAY	365	TO DATE			
1-Aug-13	24	7.9	1.2	0.004	1.16	37	18.7	0.063	0.074	77.04	208.600	62.500	0.216	113.414	0.700	0.500	0.002	0.01	0.16	0.44	3.20	738.5	79372.3	0.074	X 0 0	0	0.3
2-Aug-13	24	7.9	1.2	0.004	1.17	39.2	19.7	0.068	0.074	76.74	202.100	55.500	0.214	113.489	0.700	0.500	0.002	0.01	0.16	0.44_	3.60	526.7	79508.1	0.073	X 0 0	0	0.2
3-Aug-13	24	9.7	1.4	0.005	1.18	33.9	17.0	0.059	0.074	76.42	209.400	63,900	0.220	113.769	0.600	0.400	0.001	0.00	0.16	0.44	3.50	0.0	78979.6	0.073	X 0 0	0	0.2
4-Aug-13	24	9	1.2	0.005	1.19	34.6	16.2	0.061	0.073	76.07	184.100	52.400	0.197	113.992	0.600	0.400	0.001	0.00	0.15	0.45	3.70	0.0	78979.6	0.073	X 0 0	0	0.1
5-Aug-13	24	8.8	1.3	0.004	1.21	40	20.0	0.069	0.073	75.72	192,600	58.600	0.201	114.179	0.600	0.400	0.001	0.00	0.14	0.45	3.40	794.4	79773.9	0.073	X 0 0	0	0.2
6-Aug-13	24	7.8	1.1	0.004	1.22	38.1	18.3	0.068	0.072	75.40	184.300	53.700	0.199	114.282	0.500	0.300	0.001	0.00	0.13	0.45	3.90	874.9	79875.7	0.072	XOO	0	0.2
7-Aug-13	24			0.004	1.23	38.9	19.8	0.069	0.072	75.08	186.300	57.900	0.204	114.506	0.500	0.400	0.001	0.00	0.14	0.45	3.90	881.1	80038.9	0.072	XUU	0	0.2
8-Aug-13	23.99	6.2	0.9	0.003	1.24	30.5	10.1	0.065	0.072	74.79	0.000	0.000	0.211	114.507	0.500	0.400	0.001	0.00	0.14	0.45	4.20	024.1	79890.5	0.072		-0	0_2
9-Aug-13	10.02	12	0.6	0.005	1.23	27.8	14.2	0.073	0.070	73.00	230 100	56,000	0.000	114.034	0.000	0.000	0.000	0.00	0.14	0.44	7.70	7.8	79378.0	0.072		- U - Y	0.0
10-Aug-13	19.02	4.2	0.0	0.003	1.24	27.0	16.9	0.061	0.003	73.50	155 100	51 000	0.207	113 962	0.400	0.300	0.001	0.00	0.14	0.45	5.50	0.0	79011.9	0.072	XOO		0.1
12-Aug-12	24	4.0	0.0 0.9	0.003	1.25	31.5	17.4	0.062	0.068	73.21	182 600	57 500	0.132	114 050	0.500	0.400	0.001	0.00	0.15	0.45	5.00	780.8	79792 6	0.072	X00	0	0.1
13-Aug-13	24	4.4	0.8	0.003	1.25	33.3	18.4	0.066	0.065	72.85	207.000	69.300	0.248	114 262	0.600	0.500	0.002	0.01	0.15	0.45	5.10	655.9	79990.4	0.072	X00	0	0.1
14-Aug-13	24	3.5	0.6	0.002	1.20	30.6	17.0	0.064	0.065	72.48	156,400	53.000	0.198	114 263	0.500	0.400	0.001	0.00	0.15	0.45	5.70	607.3	79794 4	0.071	XOO	0	0.1
15-Aug-13	24	3.6	0.6	0.002	1.27	29.5	16.9	0.062	0.065	72.25	176,900	56,400	0.227	114,279	0.500	0.400	0.001	0.00	0.15	0.45	5.90	646.5	80064.1	0.071	XOO	0	0.1
16-Aug-13	24	3.8	0.6	0.002	1.28	27.6	15.1	0.059	0.065	71.92	162.400	54.000	0.215	114.364	0.500	0.400	0.001	0.00	0.14	0.45	6.10	654.7	79945.5	0.071	X 0 0	0	0.1
17-Aug-13	. 24	4.8	0.8	0.003	1.28	29.4	16.7	0.061	0.065	71.61	157.800	54.500	0.201	114,459	0.600	0.400	0.002	0.00	0.14	0.45	5.70	0.0	79167.6	0.071	X 0 0	0	0.1
18-Aug-13	24	3.6	0.6	0.002	1.29	28.7	16.1	0.060	0.065	71.20	154.900	52.800	0.196	114.578	0.600	0.500	0.002	0.01	0.14	0.45	5.70	0.0	79167.6	0.070	X O O	0	0.1
19-Aug-13	24	3.3	0.5	0.002	1.29	31.6	17.1	0.062	0.065	70.84	165.300	54.500	0.198	114.714	0.700	0.500	0.002	0.01	0.15	0.45	5.10	962.8	80130.4	0.070	X 0 0	0	0.1
20-Aug-13	24	4.1	0.6	0.002	1.29	31	16.0	0.059	0.064	70.45	169,700	53.200	0.197	114.848	0.700	0.500	0.002	0.01	0.15	0.45	4.70	592.4	79999.1	0.070	X 0 0	0	0.1
21-Aug-13	24	3.5	0.5	0.002	1.30	32	16.5	0.063	0.064	70.06	144.600	45.200	0.172	114.686	0.800	0.600	0.002	0.01	0.15	0.45	5.00	501.3	79737.2	0.070	X 0 0	0	0.1
22-Aug-13	24	4.1	0.6	0.003	1.30	29.7	15.8	0.059	0.064	69.66	185.700	60.200	0.227	114.911	0.700	0.600	0.002	0.01	0.15	0.45	5.30	688.9	79617.3	0.070	X 0 0	0	0.2
23-Aug-13	24	4.1	0.7	0.002	1.31	28.9	16.3	0.060	0.064	69.30	130.500	44.500	0.164	114.968	0.700	0.500	0.002	0.01	0.15	0.45	5.60	576.6	79544.8	0.069	X 0 0	0	0.1
24-Aug-13	24	5.1	0.9	0.003	1.31	31.8	18.7	0.067	0.064	68.96	145.100	52.000	0.186	115.215	0.700	0.600	0.002	0.01	0.15	0.45	5.80	0.0	79155.3	0.069	X 0 0	0	0.2
25-Aug-13	24	4.3	0.8	0.003	1.31	30.7	18.0	0.063	0.065	68.60	130.700	46,800	0.163	115,360	0.700	0.500	0.002	0.01	0.16	0.45	5.50	0.0	79155.3	0.069	X 0 0	0	0.2
26-Aug-13	24	4	0.7	0.002	1.32	31.7	18.8	0.065	0.064	68.23	148.400	53.500	0.186	115.587	0.700	0.600	0.002	0.01	0.16	0.45	5.60	898.4	80053.7	0.06	XOC	0	0.3
27-Aug-13	24	5.8	1	0.004	1.33	32	18.5	0.065	0.064	67.89	140.100	49.500	0.174	115.838	0.800	0.700	0.002	0.01	0.16	0.45	5.50	860.8	80163.1	0.06		0	0.2
28-Aug-13	24	5.6	1	0.003	1.34	31.9	18.9	0.065	0.064	67.53	154.300	55.400	0.189	116.174	0.900	0.700	0.002	0.01	0.16	0.45	5.40	915.0	80467.0	0.06		0	0.2
29-Aug-13	24	4.1	0.7	0.002	1.35	34.2	20.5	0.070	0.064	67.24	146.100	53.300	0.182	116.296	0.800	0.700	0.002	0.01	0.17	0.45	5.50	742.0	80436.9	0.06			0.1
30-Aug-13	24	3.7	0.6	0.002	1.35	35.4	20.6	0.073	0.064	66.61	143.200	56.600	0.181	116.553	0.900	0.700	0.003	0.01	0.17	0.45	5.70	742.8	80829.0	0.06			0.2
AVG TOTA	715.01	5.23	0.0	0.002	1.30	32.68	17 74	0.072	0.004	71.83	164 55	52.95	0.202	114 72	0.300	0.700	0.000	0.01	31.	31	31	31	79722 7	0.00			
AV0/TOTA	10.01	0.20	0.02		1.2,1	02.00		1	0.01	71.00		02.00	0.10	114.14	0.00	0.40	0.00	0.10					10122.1	0.01	1 1 1 1		
			ALIC		YTD							EMI	SSIO	N LIMI	TS												
TOTAL	TONS N	нз	0.29		1.08				Pollutant		PPMV		#/MMBT	J	Tons	Averaging I	Period										
TOTAL	TONSN	OX	6.35		44 14				507				0 10			3 Hr Arithr	natic	-									
TOTAL	TONS C	0	19.56	5	82.06										2.90	30 Day Ro	olling										
TOTAL	TONS S	02	0.18	3	0.55				со				0.20			- 24 Hr Aritt	nmatic	0 .30 - 3	Startup & S	hutdown &	& Load Swir	ngs					
HOURS	ON LIN	Е	715	5	2879,77				NOx				0.175			30 Day rol	lling										
1									NH3		10)				3 Hr Arithi	natic										_

					PI	NETF	REE PO	OWEI	R FIT	CHB	URG E	MIS	SION	REPOF	RT (d	aily av	erages	s)									
					NH3				NOX	NOX				CO					SO2	SO2		WOOD	WOOD	NOX			
	HOURS	NH3	NH3	NH3	365	NOX	NOX	NOX	30	365	CO	со	СО	365	SO2	SO2	SO2	SO2	30 DAY	365	STACK	INTO	BURN	QTR	FUE	LC	PACITY
	ON	PPM	LB/HR	LB/MM	ROLL	PPM	LB/HR	LB/MM	DAY	ROLL	PPM	LB/HR	LB/MM	ROLL	PPM	LB/HR	LB/MM	TON	TOTAL	ROLL	02	PLANT	LAST	AVE.	WLP	N	AVE.
DATE	LINE	Aller ar ease Surrays		BTU	TONS	<u></u>]		BTU	AVE.	TONS			BTU	TONS			BTU	DAY	TONS	TONS		DAY	365	TO DATE			
1-Aug-13	24	7.9	1.2	0.004	1.16	37	18.7	0.063	0.074	77.04	208.600	62.500	0.216	113.414	0.700	0.500	0.002	0.01	0.16	0.44	3.20	738.5	79372.3	0.074	X 0 0	0	0.3
2-Aug-13	24	7.9	1.2	0.004	1.17	39.2	19.7	0.068	0.074	76.74	202.100	55.500	0.214	113.489	0.700	0.500	0.002	0.01	0.16	0.44_	3.60	526.7	79508.1	0.073	X 0 0	0	0.2
3-Aug-13	24	9.7	1.4	0.005	1.18	33.9	17.0	0.059	0.074	76.42	209.400	63,900	0.220	113.769	0.600	0.400	0.001	0.00	0.16	0.44	3.50	0.0	78979.6	0.073	X 0 0	0	0.2
4-Aug-13	24	9	1.2	0.005	1.19	34.6	16.2	0.061	0.073	76.07	184.100	52.400	0.197	113.992	0.600	0.400	0.001	0.00	0.15	0.45	3.70	0.0	78979.6	0.073	X 0 0	0	0.1
5-Aug-13	24	8.8	1.3	0.004	1.21	40	20.0	0.069	0.073	75.72	192,600	58.600	0.201	114.179	0.600	0.400	0.001	0.00	0.14	0.45	3.40	794.4	79773.9	0.073	X 0 0	0	0.2
6-Aug-13	24	7.8	1.1	0.004	1.22	38.1	18.3	0.068	0.072	75.40	184.300	53.700	0.199	114.282	0.500	0.300	0.001	0.00	0.13	0.45	3.90	874.9	79875.7	0.072	XOO	0	0.2
7-Aug-13	24			0.004	1.23	38.9	19.8	0.069	0.072	75.08	186.300	57.900	0.204	114.506	0.500	0.400	0.001	0.00	0.14	0.45	3.90	881.1	80038.9	0.072	XUU	0	0.2
8-Aug-13	23.99	6.2	0.9	0.003	1.24	30.5	10.1	0.065	0.072	74.79	0.000	0.000	0.211	114.507	0.500	0.400	0.001	0.00	0.14	0.45	4.20	024.1	79890.5	0.072		-0	0_2
9-Aug-13	10.02	12	0.6	0.005	1.23	27.8	14.2	0.073	0.070	73.00	230 100	56,000	0.000	114.034	0.000	0.000	0.000	0.00	0.14	0.44	7.70	7.8	79378.0	0.072		- U - Y	0.0
10-Aug-13	19.02	4.2	0.0	0.003	1.24	27.0	16.9	0.061	0.003	73.50	155 100	51 000	0.207	113 962	0.400	0.300	0.001	0.00	0.14	0.45	5.50	0.0	79011.9	0.072			0.1
12-Aug-12	24	4.0	0.0 0.9	0.003	1.25	31.5	17.4	0.062	0.068	73.21	182 600	57 500	0.132	114 050	0.500	0.400	0.001	0.00	0.15	0.45	5.00	780.8	79792 6	0.072	X00	0	0.1
13-Aug-13	24	4.4	0.8	0.003	1.25	33.3	18.4	0.066	0.065	72.85	207.000	69.300	0.248	114 262	0.600	0.500	0.002	0.01	0.15	0.45	5.10	655.9	79990.4	0.072	X00	0	0.1
14-Aug-13	24	3.5	0.6	0.002	1.20	30.6	17.0	0.064	0.065	72.48	156,400	53.000	0.198	114 263	0.500	0.400	0.001	0.00	0.15	0.45	5.70	607.3	79794 4	0.071	XOO	0	0.1
15-Aug-13	24	3.6	0.6	0.002	1.27	29.5	16.9	0.062	0.065	72.25	176,900	56,400	0.227	114,279	0.500	0.400	0.001	0.00	0.15	0.45	5.90	646.5	80064.1	0.071	XOO	0	0.1
16-Aug-13	24	3.8	0.6	0.002	1.28	27.6	15.1	0.059	0.065	71.92	162.400	54.000	0.215	114.364	0.500	0.400	0.001	0.00	0.14	0.45	6.10	654.7	79945.5	0.071	X 0 0	0	0.1
17-Aug-13	. 24	4.8	0.8	0.003	1.28	29.4	16.7	0.061	0.065	71.61	157.800	54.500	0.201	114.459	0.600	0.400	0.002	0.00	0.14	0.45	5.70	0.0	79167.6	0.071	X 0 0	0	0.1
18-Aug-13	24	3.6	0.6	0.002	1.29	28.7	16.1	0.060	0.065	71.20	154.900	52.800	0.196	114.578	0.600	0.500	0.002	0.01	0.14	0.45	5.70	0.0	79167.6	0.070	X O O	0	0.1
19-Aug-13	24	3.3	0.5	0.002	1.29	31.6	17.1	0.062	0.065	70.84	165.300	54.500	0.198	114.714	0.700	0.500	0.002	0.01	0.15	0.45	5.10	962.8	80130.4	0.070	X 0 0	0	0.1
20-Aug-13	24	4.1	0.6	0.002	1.29	31	16.0	0.059	0.064	70.45	169,700	53.200	0.197	114.848	0.700	0.500	0.002	0.01	0.15	0.45	4.70	592.4	79999.1	0.070	X 0 0	0	0.1
21-Aug-13	24	3.5	0.5	0.002	1.30	32	16.5	0.063	0.064	70.06	144.600	45.200	0.172	114.686	0.800	0.600	0.002	0.01	0.15	0.45	5.00	501.3	79737.2	0.070	X 0 0	0	0.1
22-Aug-13	24	4.1	0.6	0.003	1.30	29.7	15.8	0.059	0.064	69.66	185.700	60.200	0.227	114.911	0.700	0.600	0.002	0.01	0.15	0.45	5.30	688.9	79617.3	0.070	X 0 0	0	0.2
23-Aug-13	24	4.1	0.7	0.002	1.31	28.9	16.3	0.060	0.064	69.30	130.500	44.500	0.164	114.968	0.700	0.500	0.002	0.01	0.15	0.45	5.60	576.6	79544.8	0.069	X 0 0	0	0.1
24-Aug-13	24	5.1	0.9	0.003	1.31	31.8	18.7	0.067	0.064	68.96	145.100	52.000	0.186	115.215	0.700	0.600	0.002	0.01	0.15	0.45	5.80	0.0	79155.3	0.069	X 0 0	0	0.2
25-Aug-13	24	4.3	0.8	0.003	1.31	30.7	18.0	0.063	0.065	68.60	130.700	46,800	0.163	115,360	0.700	0.500	0.002	0.01	0.16	0.45	5.50	0.0	79155.3	0.069	X 0 0	0	0.2
26-Aug-13	24	4	0.7	0.002	1.32	31.7	18.8	0.065	0.064	68.23	148.400	53.500	0.186	115.587	0.700	0.600	0.002	0.01	0.16	0.45	5.60	898.4	80053.7	0.06	XOC	0	0.3
27-Aug-13	24	5.8	1	0.004	1.33	32	18.5	0.065	0.064	67.89	140.100	49.500	0.174	115.838	0.800	0.700	0.002	0.01	0.16	0.45	5.50	860.8	80163.1	0.06		0	0.2
28-Aug-13	24	5.6	1	0.003	1.34	31.9	18.9	0.065	0.064	67.53	154.300	55.400	0.189	116.174	0.900	0.700	0.002	0.01	0.16	0.45	5.40	915.0	80467.0	0.06		0	0.2
29-Aug-13	24	4.1	0.7	0.002	1.35	34.2	20.5	0.070	0.064	67.24	146.100	53.300	0.182	116.296	0.800	0.700	0.002	0.01	0.17	0.45	5.50	742.0	80436.9	0.06			0.1
30-Aug-13	24	3.7	0.6	0.002	1.35	35.4	20.6	0.073	0.064	66.61	143.200	56.600	0.181	116.553	0.900	0.700	0.003	0.01	0.17	0.45	5.70	142.8	80829.0	0.06			0.2
AVG TOTA	715.01	5.23	0.0	0.002	1.30	32.68	17 74	0.072	0.004	71.83	164 55	52.95	0.202	114 72	0.300	0.700	0.000	0.01	31.	31	31	31	79722 7	0.00			
AV0/TOTA	10.01	0.20	0.02		1.2,1	02.00		1	0.01	71.00		02.00	0.10	114.14	0.00	0.40	0.00	0.10					10122.1	0.01	1 1 1 1		
			ALIC		YTD							EMI	SSIO	N LIMI	TS												
TOTAL	TONS N	нз	0.29		1.08				Pollutant		PPMV		#/MMBT	J	Tons	Averaging I	Period										
TOTAL	TONSN	OX	6.35		44 14				507				0 10			3 Hr Arithr	natic	-									
TOTAL	TONS C	0	19.56	5	82.06										2.90	30 Day Ro	olling										
TOTAL	TONS S	02	0.18	3	0.55				со				0.20			- 24 Hr Aritt	nmatic	0 .30 - 3	Startup & S	hutdown &	& Load Swir	ngs					
HOURS	ON LIN	Е	715	5	2879,77				NOx				0.175			30 Day rol	lling										
1									NH3		10)				3 Hr Arithi	natic										_

					P	INET	REE P	OWEI	R FIT	CHB	URG E	MIS	SION	REPOI	RT (d	aily av	erages	;)									
· · · · · ·					NH3				NOX	NOX				СО					SO2	SO2		WOOD	WOOD	NOX			
L	HOURS	NH3	NH3	NH3	365	NOX	NOX	NOX	30	365	<u></u> CO	CO	CO	365	SO2	SO2	SO2	SO2	30 DAY	365	STACK	INTO	BURN	QTR	FU	EL	OPACITY
DATE	UNE	РРМ	LB/HR	LB/MM PTU	TONS	РРМ	LB/HR	LB/MM BTU	DAY	TONS	РРМ	LB/HR	LB/MM BTU	TONS	РРМ	LB/HR	LB/MM PTU	TON	TOTAL	ROLL	02	PLANT	LAST	AVE.	WL	P N	AVE.
Statester	LINE			БІС	TONS			BIU	AVE.	1003			BIU	TONS			BIU	DAY	IUNS	10115		DAY	305	TUDATE		┿┷┿╼┥	
1-Sep-13	24	4	0.7	0.002	1.36	34.5	20.0	0.074	0.065	66.28	142.000	50.100	0.185	116.912	1.000	0.800	0.003	0.01	0.18	0.46	6.00	0.0	80371.0	0.069	XO	0 0	0.1
2-Sep-13	24	3.0	0.5	0.002	1.3/	32.5	10.7	0.070	0.065	65.54	143.500	52 200	0.187	117.222	1.000	0.800	0.003	0.01	0.18	0.46	6.10	0.0	803/1.0	0.069	XO	0 0	0.1
4-Sep-13	15.58	3.5	0.7	0.003	1.37	26.7	16.0	0.070	0.005	65 13	130.000	43 300	0.134	117.420	0.800	0.100	0.004	0.00	0.18	0.40	8 30	943.7	81263.5	0.069	X O	0 0	0.1
5-Sep-13	10.00	0.0	0.0	0.000	1.36	0	0.0	0.000	0.063	64.57	0.000	0.000	0 000	116 306	0.000	0.000	0.000	0.01	0.10	0.45	0.00	931.8	81427.2	0.003		0 0	0.2
6-Sep-13	0	0.6	0	0.000	1.35	1.2	0.0	0.000	0.060	64.00	339.900	0.000	0.000	115.532	0.200	0.000	0.000	0,00	0.17	0.45	17.40	362.5	80950.4		0 0	0 X	0.0
7-Sep-13	20.82	4	0.6	0.006	1.36	17.5	9.4	0.047	0.060	63.51	191.400	52.400	0.172	115.469	0.500	0.400	0.004	0.00	0.17	0.45	8.10	0.0	80178.0	0.067	X O	0 X	0.1
8-Sep-13	24	4.8	0.8	0.003	1.36	21	12.1	0.045	0.059	63.06	173.000	60.600	0.225	115.616	0.600	0.500	0.002	0.01	0.18	0.45	6.00	0.0	80178.0	0.066	X O	0 0	0.1
9-Sep-13	24	6.8	1.1	0.004	1.37	22.1	12.5	0.047	0.058	62.61	163.500	53.100	0.208	115.620	0.600	0.500	0.002	0.01	0.18	0.45	5.80	780.6	80958.6	0.066	X 0	0 0	0.1
10-Sep-13	24	3.5	0.6	0.002	1.37	33.7	20.0	0.069	0.059	62.22	165.600	59.800	0.206	115.719	0.800	0.700	0.002	0.01	0.18	0.45	5.50	474,4	80811.9	0.066	X O	0 0	0.2
11-Sep-13	24	3.8	0.6	0.002	1.37	32.5	18.6	0.066	0.059	61.81	167.400	56.300	0.207	115.666	0.900	0.700	0.003	0.01	0.19	0.45	5.50	634.2	80815.4	0.066	<u>x o</u>	0 0	0.1
12-Sep-13	24	3.4	0.6	0.002	1.36	34.1	19.8	0.068	0.059	61.46	164.400	58.300	0.198	115.652	1.000	0.800	0.003	0.01	0.19	0.45	5.20	662.8	80725.6	0.066	X 0	0 0	0.1
13-Sep-13	24	3.9	0.7	0.002	1.36	34.7	21.0	0.071	0.059	61.23	155.900	57.300	0.194	115.768	1.000	0.800	0.003	0.01	0.20	0.45	5.60	584.1	80625.5	0.066	XO	0 X	0.1
14-Sep-13	24	4.2	0.7	0.002	1.37	30.3	10.0	0.003	0.059	60.90	128 000	35.600	0.195	115.694	0.900	0.700	0.002	0.01	0.20	0.45	5.80	0.0	79843.0	0.066	X 0	0 0	0.1
16-Sep-13	24	37	0.0	0.002	1.37	33	20.0	0.069	0.000	60.33	135 600	50 000	0.173	115 263	0.000	0.700	0.002	0.01	0.20	0.45	5.80	725.0	80568.6	0.000	X 0	0 0	0.1
17-Sep-13	24	3.8	0.7	0.002	1.38	34.6	21.1	0.073	0.060	59.98	132,400	49,100	0.169	115.074	0.800	0.700	0.002	0.01	0.21	0.45	5 80	907.4	80682.6	0.066	X 0	0 0	0.1
18-Sep-13	24	3.8	0.7	0.002	1.38	34.5	20.8	0.073	0.061	59.70	147,000	53.800	0.190	115.100	0.800	0.700	0.002	0.01	0.21	0.45	5.90	794.1	80441.1	0.066	X O	0 0	0.1
19-Sep-13	24	3.9	0.7	0.002	1.39	36	21.4	0.074	0.061	59.41	142.600	51.800	0.179	115.038	0.900	0.700	0.003	0.01	0.21	0.45	5.60	901.2	80682.9	0.067	X 0	0 0	0.1
20-Sep-13	24	5.1	0.9	0.003	1.39	36.3	21.9	0.076	0.062	59.13	136.700	50.100	0.174	114.966	0.900	0.800	0.003	0.01	0.22	0.44	5.70	562.1	80759.1	0.067	X 0	0 0	0.1
21-Sep-13	24	4.8	0.9	0.003	1.40	34	20.7	0.072	0.062	58.83	148.400	55.000	0.193	115.031	0.900	0.800	0.003	0.01	0.22	0.44	5.90	0.0	80279.1	0.067	X 0	0 0	0.2
22-Sep-13	24	4.3	0.7	0.003	1.40	36.8	20.6	0.077	0.063	58.53	151.300	51.000	0,194	115.032	1.000	0.800	0.003	0.01	0.22	0.44	5.80	0.0	80279.1	0.067	X 0	0 0	0.1
23-Sep-13	24	4.2	0.7	0.003	1.41	31.6	17.3	0.071	0.063	58.19	130.100	42.100	0.176	114.921	0.800	0.600	0.002	0.01	0.22	0.44	6.50	606.1	80885.2	0.067	X 0	0 0	0.1
24-Sep-13	24	4.1	0.7	0.003	1.41	34.2	19.8	0.072	0.063	57.90	153.000	54.600	0.194	114.965	0.700	0.600	0.002	0.01	0.22	0.44	5.70	924.7	81118.0	0.067	X 0	0 0	0.1
25-Sep-13	24	3.3	0.6	0.002	1.42	35.3	20.0	0.075	0.063	57.61	157.800	54.700	0.204	114.996	0.800	0.600	0.002	0.01	0.22	0.44	5.90	707.7	81050.1	0.067	X 0	0 0	0.1
26-Sep-13	24	4.3	0.7	0.003	1.43	36.6	20.4	0.076	0.064	57.32	140.800	46.800	0.177	114.888	0.800	0.600	0.002	0.01	0.22	0.44	5.60	/94.8	81114.5	0.067		0 0	0.1
27-Sep-13	24	3.0	0.6	0.002	1.43	35.8	20.2	0.073	0.064	56 72	144.800	47.000	0.180	114.720	0.900	0.700	0.002	0.01	0.22	0.44	5.50	0.0	80889.0	0.067	X 0	0 0	0.1
20-Sep-13	24	4.5	0.7	0.003	1.44	36.3	20.4	0.075	0.064	56.42	139.000	49.300	0.174	114.722	0.800	0.700	0.002	0.01	0.22	0.44	5.80	0.0	80417.8	0.067	- x lo	0 0	0.1
30-Sep-13	24	4.8	0.8	0.003	1.45	36.1	20.8	0.076	0.064	56.15	144.500	50.700	0.185	114.714	0.800	0.700	0.002	0.01	0.22	0.44	5.80	345.4	80763.2	0.068	XO	0 0	0.1
AVG./TOTA	660.40	3.86	0.65	0.00	1.39	30.46	17.70	0.064	0.06	60.73	150.44	48.22	0.17	115.51	0.79	0.62	0.002	0.22	30	30	30	30	80656.6	0.067	·		
			SEPT		ΥTD							EMI	[SSIO]	N LIM	TS												
TOTAL	TONS N	H3	0.23		1.32				Pollutant		PPMV		#/MMBT	U	Tons	Averaging	Period										
TOTAL	TONS N	OX	6.29		50.43				SO2				0.10	-		3 Hr Arithi	matic	5									
TOTAL	TONS C	0	17.09)	99.15										2.90	30 Day Ro	olling										
TOTAL	TONS S	02	0.22	t	0.77				со				0.20			24 Hr Aritl	nmatic	0 .30 - 5	Startup & St	utdown 8	Load Swin	gs					
HOURS	ON LIN	Ē	660)	3540.17				NOx				0.175			30 Day rol	ling					-					
10000		~							NH3		10)				3 Hr Arith	matic										

.

EXCESS EMISSION DEVIATION SUMMARY REPORT FOR PM, NO_x, CO, SO2, NH₃ AND OPACITY

(EPA only; reports previously submitted to DEP in accordance with PTP Operating Permit).

Summary:

- 1) There were no NOx, SO2 or CO excess emission deviation events for the reported quarter.
- 2) There were 2 NH3 & 8 Opacity excess emission deviation events for the reported quarter.

SOURCE OPERATION REPORT BY QUARTER AND MONTH

Period	Unit Operation in hours
Quarter	2014
July	639
August	715
September	660

CEMS AVAILABILITY REPORT

Daily, Monthly, & Quarterly CEMS Uptime Calculations

Availability = 100% - % Downtime {% Downtime = CEMS Downtime/GT Uptime * 100} Availability Limits: - Daily 75 %; Monthly 75 %; Quarterly 90%

<u>There were no monthly, or quarterly CEMS uptime deviations.</u> <u>There were no CEMS downtime events on Opacity, CO, NOx, NH3, SO2 or O2.</u>

.

FAILED DAILY CALIBRATION DRIFT REPORT FOR NOX, CO, NH3, OPACITY, SO2 AND O2

There were no 40 CFR Part 60 failed daily calibration drift events on CO, NOx, NH3, SO2, Opacity and O2 CEMS.

Pinetree Power Fitchburg - Unit 1 CEMS Cylinder Gas Audit Report

Test Date:	9/27/2013	9/30/2013			
Parameter:	1	02			
Range:	0-25%				
Gas Range	Bottle Gas Value	Bottle #	Expiration Date		
Gas 1: Low	4 9 3 9	CC351214	8/29/2020		
Gas 2: Mid	9.964	CC119402	8/21/2020		
	Test	Results			
Time	Gas 1: Low	Gas 2: Mid	T		
8:16	4.400				
8:22		9.400	1		
8:29	4.440				
8:37		9.600	4		
8:43	4.700				
8:50		9.700	Limits		
Average:	4.513	9.567	CGA		
RA %:	8.6%	4.0%	15.0 %		
Abs Diff (%)	0.4%	0.4%	5.0 %		
Parameter		Nox			
Ranges		0-250 ppm			
Gas Range	Bottle Gas Value	Bottle #	Expiration Date		
Gas 1: Low	61.030	CC320881	9/7/2020		
Gas 2: Mid	138.800	CC414158	6/22/2021		
Test Results	-				
Time	Gas 1: Low	Gas 2: Mid			
9:14	60.480				
9:25		137.280			
9:37	61.240				
9:48		139.020			
10:00	61.620				
10:09		139.080	Limits		
Average:	61.113	138.460	CGA		
RA %:	0.1%	-0.2%	15.0 %		
Abs Diff (ppm)	0.1	0.3	5.0 ppm		

Enter data in the blue shaded areas. Enter data on this sheet only.

Note: Must pass one of the two passing parameters. Note: Each test run can pass either of the two passing parameter

Tester(s):	Timothy Haley			
Parameter		СО		
Ranges		0-500 ppm		
Gas Range	Bottle Gas Value	Bottle #	Expiration Date	
Gas 1: Low	127.300	CC320881	9/7/2020	
Gas 2: Mid	276.100	CC414158	6/22/2021	
Test Results				
Time	Gas 1: Low	Gas 2: Mid		
9:14	130.060		-	
9:25		272.200	7	
9:37	131.120			
9:48		277.100	1	
10:00	130.920			
10:09		278.100	Limits	
Average:	130.700	275.800	CGA	
RA %:	2.7%	0.1%	15.0 %	
Abs Diff (ppm)	3.4	0.3	5.0 ppm	

Parameter	SO2				
Ranges	0-250 ppm				
Gas Range	Bottle Gas Value	Bottle #	Expiration Date		
Gas 1: Low	59.500	CC320881	9/7/2020		
Gas 2: Mid	138.100	CC414158	6/22/2021		
Test Results					
Time	Gas 1: Low	Gas 2: Mid			
9:14	60.620		-		
9:25		139.580			
9:37	61.040				
9:48		143.540	-		
10:00	61.380				
10:09		143.840	Limits		
Average:	61.013	142.320	CGA		
RA:	2.5%	3.1%	15.0 %		
Abs Diff (ppm)	1.5	4.2	5.0 ppm		

Parameter		NH3			
Ranges	0-50 ppm				
Gas Range	Bottle Gas Value	Bottle #	Expiration Date		
Gas 1: Low	12.460	CC411700	N/A		
Gas 2: Mid	27.140	CC196211	N/A		
Test Results	· · · · · · · · · · · · · · · · · · ·		•		
Time	Gas 1: Low	Gas 2: Mid			
13:29	13.100				
13:17		25.960			
13:49	13.480				
13:53		25.940	-		
14:07	12.840				
14:20		26.140	Limits		
Average:	13.140	26.013	CGA		
RA:	5.5%	4.2%	15.0 %		
Abs Diff (ppm)	0.7	1.1	5.0 ppm		

PINETREE POWER FITCHBURG		September 30, 2013		
OPACITY	TTY AUDIT CALCULATION SHEET		DURAG DR-290-A	
run #	Tilter value	reading	difference	<u>d^2</u>
1	0.000	0.000	0.000	0.000
1/	0.000	0.100	0.100	0.010
		SUM1=	0.100	
			SUM2=	0.010
				0.050
	ARITH MEAN DI			0.050
	CONFIDENCE C	OEFFICIENT		0.028
	CALIBRATION E	RROR		0.078
run #	filter value	reading	difference	d^2
2	21.800	21.775	-0.025	0.001
6	21.800	21.800	0.000	0.000
10	21.800	21.800	0 000	0 000
13	21.800	21,800	0.000	0,000
16	21,800	21 800	0.000	0.000
	21.000	SUM1=	-0.025	0.000
		0011-	SUM2=	0.001
			001012-	0.001
	ARITH MEAN DIF	FERENCE		-0.005
	CONFIDENCE CO	DEFFICIENT		0.014
	CALIBRATION EI	ROR		0.009
run #	filter value	reading	difference	d^2
4	48.700	48.700	0.000	0.000
7	48.700	48.750	0.050	0.002
9	48.700	48.700	0.000	0.000
12	48.700	48.700	0.000	0.000
14	48.700	48.750	0.050	0.002
		SUM1=	0.100	
			SUM2=	0.005
	ARITH MEAN DIF	FERENCE		0.020
	CONFIDENCE CO	DEFFICIENT		0.034
	CALIBRATION EF	ROR		0.054
run #	filter value	reading	difference	d^2
3	74.800	74.900	0.100	0.010
5	74.800	75.000	0.200	0.040
8	74.800	74,900	0.100	0.010
11	74.800	74,950	0.150	0.023
15	74.800	75.200	0.400	0.160
		SUM1=	0.950	
			SUM2=	0.243
	ARITH MEAN DIF	FERENCE		0.190
CONFIDENCE COEFFICIENT				0.155
	CALIBRATION ER	ROR		0.345
CONFIDE		= 0.2776 J	(SUM1)-(SUM2)2	
ARITH	MATIC MEAN DIFF	= <u>SUM1</u>	(- 5) (50mc)	
		5		

OPACITY AUDIT FIELD DATA SHEET

OPERAT	OR :	T.R.Haley				DATE :	9/30	/2013	-
CITY, ST	A <u>TE :</u>	Westminster	, MA.			OPLR :			-
STACK #	:		DURA	G DR-290-A	W		423981		_
				FILTER	DATA	L			
LOW FILT	ΓER S/N :	VN64	Exp.	7/30/2014	CAL C	PACITY :	21.8		-
MID FILT	ER S/N :	VN65	Exp.	7/30/2014	CAL C	PACITY :	48.7		-
HIGH FIL	TER S/N :	VN66	Exp.	7/30/2014	CAL O	PACITY :	74.8) ant	-
		FILTER VA	LUE			INSTRUME	NT READI	NG	5.4
			r			R1	R2	R3	R4
1	ZERO	0		0.00		0	0	0	0
2	LOW	21.8		21.78		21.8	21.8	21.7	21.8
3	HIGH	74.8		74.90		74.9	74.9	74.9	74.9
4	MID	48.7		48.70		48.7	48.7	48.7	48.7
5	HIGH	74.8		75.00		75	75	75	75
6	LOW	21.8		21.80		21.8	21.8	21.8	21.8
7	MID	48.7		48.75		48.7	48.8	48.7	48.8
8	HIGH	74.8		74.90		74.9	74.9	74.9	74.9
9	MID	48.7		48.70		48.7	48.7	48.7	48.7
10	LOW	21.8		21.80		21.8	21.8	21.8	21.8
11	HIGH	74.8		74.95		74.9	75	75	74.9
12	MID	48.7	T	48.70		48.7	48.7	48.7	48.7
13	LOW	21.8		21.80		21.8	21.8	21.8	21.8
14	MID	48.7		48.75		48.8	48.7	48.7	48.8
15	HIGH	74.8		75.20		75.2	75.2	75.2	75.2
16	LOW	21.8	-	21.80		21.8	21.8	21.8	21.8
17	ZERO	0		0.10		0.1	0.1	0.1	0.1
			·····						

OPACITY RESPONSE TIME TEST DATA SHEET

SITE : PINI	ETREE POWER - FITCH	IBURG		DATE :	9/30/2013
OPERATOR :	T.R.Haley				
MODEL :	DURAG DR-290-AW	S/N:	423981		
HIGH FILT <u>ER S</u>	/N : VN66	OPACITY :		74.7%	
		UPSCALE			
	1	10	SEG	CONDS	
	2	9.5	SEG	CONDS	
	3	9.8	SEG	CONDS	
	4	9	SEG	CONDS	
	5	9.5	SEG	CONDS	

DOWNSCALE :

1	9	SECONDS
2	10	SECONDS
3	9	SECONDS
4	9.5	SECONDS
5	10	SECONDS

AVERAGE :

9.53 10 READINGS

TIME REQUIRED FOR INSTRUMENT TO REACH 95% OF INDICATED FILTER VALUE